Role of sulphur in resistive switching behavior of natural rubber-based memory.

Nanotechnology

Universiti Sains Malaysia, School of Materials & Mineral Resources Engineering, Engineering Campus, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA.

Published: October 2024

The rising environmental awareness has spurred the extensive use of green materials in electronic applications, with bio-organic materials emerging as attractive alternatives to inorganic and organic materials due to their natural biocompatibility, biodegradability, and eco-friendliness. This study showcases the natural rubber based resistive switching memory devices and how varying sulphur concentrations (0 - 0.8 wt.%) in natural rubber thin films impact the resistive switching characteristics. The natural rubber was formulated and processed into a thin film deposited on an ITO substrate as the bottom electrode and with an Ag film as the top electrode. The addition of sulphur modifies the degree of crosslinking in the natural rubber thin film, from which the concentration of -C=C- group and density of defect site (S+) are affected, and hence the resistive switching behavior of the memory device. The devices exhibit bipolar resistance with symmetric switching characteristics which are attributed to the formation of conductive paths facilitate by electron transport along -C=C- and S+ defect sites between the two electrodes. Notably, a sample with 0.2 wt.% sulphur exhibits a high ON/OFF ratio (104), a large memory window (5.5 V), prolonged data retention (10 years), and reliable endurance (120 cycles). These findings highlight the potential of natural rubber as a promising material for eco-friendly resistive-switching random access memory applications. .

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad8890DOI Listing

Publication Analysis

Top Keywords

natural rubber
20
resistive switching
16
switching behavior
8
rubber thin
8
switching characteristics
8
thin film
8
natural
7
switching
5
rubber
5
role sulphur
4

Similar Publications

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Background: Blue rubber bleb nevus syndrome (BRBNS) is a rare venous malformation disorder. Currently, there is no standard therapy for this disease. However, lauromacrogol, a sclerosant extensively utilized in the management of vascular malformations, has been applied in the treatment of BRBNS.

View Article and Find Full Text PDF

Context: Despite its undeniable advantages, the rubber dam (RD) is still struggling to claim its rightful place as the most effective used isolation tool in endodontics. The study aimed to estimate the prevalence of RD use during endodontic treatment and to identify factors associated with its use by Tunisian dentists.

Materials And Methods: A cross-sectional study was conducted.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!