Insights of using microbial material in fluoride removal from wastewater: A review.

J Environ Manage

School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • Fluoride is crucial for health but can lead to serious environmental issues if present in excess, making its removal from wastewater important.
  • The review explores the use of various microbial materials, including bacteria, fungi, and algae, for effectively removing fluoride, highlighting the effectiveness of live microorganisms for low concentrations and modified materials for high levels.
  • It delves into mechanisms of adsorption, influences on technology performance, and offers future research directions aimed at improving microbial fluoride removal methods.

Article Abstract

Fluoride is an essential trace element for the human body, but excessive fluoride can cause serious environmental and health problems. Therefore, developing efficient fluoride removal technologies is crucial. This review summarizes the progress made in using microbial materials to remove fluoride from wastewater, covering strategies that involve pure cultures of bacteria, fungi, and algae, as well as modified microbial materials and bioreactors. Live microorganisms exhibit high efficiency in adsorbing low concentrations of fluoride, while modified microbial materials are more suitable for treating high concentrations of fluoride. The review discusses the adsorption mechanisms and influencing factors of these technologies, and evaluates their practical application potential through techno-economic analysis. Finally, future research directions are proposed, including the optimization of modification technologies and the selection of effective microbial species, providing theoretical guidance and a basis for future microbial defluoridation technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122867DOI Listing

Publication Analysis

Top Keywords

microbial materials
12
fluoride removal
8
modified microbial
8
concentrations fluoride
8
fluoride
7
microbial
5
insights microbial
4
microbial material
4
material fluoride
4
removal wastewater
4

Similar Publications

Oral Microbiota Associated with Clinical Efficacy of Ustekinumab in Crohn's Disease.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Stomatology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, No.1 Huanghe West Road, Huaian, 223300, Jiangsu Province, China.

Background: Crohn's Disease (CD) is a chronic inflammatory gastrointestinal disease. Ustekinumab (UST) has been utilized as a therapeutic option for CD patients. However, approximately 40-60% of patients exhibit an inadequate response to UST.

View Article and Find Full Text PDF

Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review.

Biotechnol Notes

December 2024

Department of Chemistry, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa.

Nanotechnology is a rapidly expanding field with diverse healthcare, agriculture, and industry applications. Central to this discipline is manipulating materials at the nanoscale, particularly nanoparticles (NPs) ranging from 1 to 100 nm. These NPs can be synthesized through various methods, including chemical, physical, and biological processes.

View Article and Find Full Text PDF

Catechol redox maintenance in mussel adhesion.

Nat Rev Chem

January 2025

Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.

View Article and Find Full Text PDF

Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.

View Article and Find Full Text PDF

Objective: To evaluate the effect of the toothpaste containing ε-poly-L-lysine (ε-PL) and funme peptide (FP) as key components on oral microbial composition and oral health.

Methods: An oral microbiome study was initially carried out to analyze the variation in the oral microbiota before and after use of antimicrobial peptide (AMP) toothpaste. Subsequently, a clinical trial was independently performed to assess the efficacy of AMP toothpaste by measuring the dental plaque index (PLI), volatile sulfur compounds (VSCs) levels, modified bleeding index (mBI), and bleeding on probing rate (BOP%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!