Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salinity (NaCl) and urea concentration significantly affect the diversity, structural and physiological function of microbial communities in the biological treatment of wastewater. However, the responses of microbial in high salt and urea wastewater remain elusive. Here, we investigated microbial community function and assembly of four regions using gradient domestication experiment combined with 16S rRNA gene sequencing and statistical methods. The results showed that with the increase of salinity and urea concentration, the consortium Xiamen could still remove most urea, while the other three consortia could not. The alpha diversity of microbial community initially decreased and then increased, showing a recovery trend. After domestication, the consortium Xiamen exhibited high physiological activity and complex network structure, and the community assembly process changed from stochastic to deterministic during the domestication. Furthermore, the keystones with low abundance were associated with urea removal and important for maintain the complexity of the networks, while Arenibacter and Oceanimonas were found to be keystones in maintaining efficient urea removal in harsh environments. To sum up, environmental effects dominated by salinity and urea concentration stress drove the community assembly and species coexistence that underpinned the microbial differentiation pattern at a geographic scale. These results provided new sights for elucidate how microbial response to salinity and urea during wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!