Fluorescent chemosensors are highly important for various applications including medical diagnostics, environmental monitoring, and industrial processing. Significant advancements have been made to produce sensors capable of detecting biologically and environmentally relevant ions. Specifically, carbazole-derived fluorophores are chemically stable agents with the ability to detect anions, cations, and small bioorganic molecules. However, most carbazole-based fluorescent probes for the detection of metal ions are Schiff bases and require stringent pH control to prevent hydrolysis. On the other hand, amide-based sensors that utilize stable amino acid scaffolds provide a robust sensing platform as well as a soft-chemical environment for detecting both soft and heavy metal ions. Herein, we explored an aromatic amino acid Phe-containing carbazole-based "turn-off" fluorescent chemosensor to improve the sensor specificity using π-conjugation and additional binding sites. The structure of the novel chemosensor was characterized by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, the sensing properties towards metal ions were studied using UV-vis and fluorescence spectroscopy. Among the various metal ions tested, the chemosensor showed high selectivity and sensitivity towards Co, Ni, and Cu ions. The detection limits for Co, Ni, and Cu ions were found to be 4.78 µM, 3.50 µM, and 5.17 µM respectively. Furthermore, the interaction of Phe-amino-carbazole with the various tested metal ions resulted in a flakes-like supramolecular structure, similar to the native Phe-amino-carbazole, whereas the interaction of the designed chemosensor with the Pb metal ion resulted in a uniform 3D-circular disc-like supramolecular structure, as confirmed by electron microscopy experiment. This highlights the potential of the Phe-containing carbazole-derived chemosensor for the detection of multiple cations with a decrease in the fluorescence response with a lower detection limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125277 | DOI Listing |
Nanotechnology
January 2025
Kwangwoon University, 20 Kwangwoonro Nowon-Gu Seoul, Nowon-gu, 01897, Korea (the Republic of).
To implement a neuromorphic computing system capable of efficiently processing vast amounts of unstructured data, a significant number of synapse and neuron devices are needed, resulting in increased area demands. Therefore, we developed a nanoscale vertically structured synapse device that supports high-density integration. To realize this synapse device, the interface effects between the resistive switching layer and the electrode were investigated and utilized.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow, 119454, Russian Federation.
All crystal structures containing nitrate ions, water molecules and one of the rare earth (RE) metal atoms (La-Lu, Y, Sc) were extracted from the Inorganic Crystal Structure Database. The composition of the identified compounds is analyzed in terms of the number of coordinated and uncoordinated water molecules and nitrate ions. Among the resulting compounds, several isotypic and morphotropic series are observed.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!