A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of ultrasonic probe type, frequency, and static pressure on large-scale graphene exfoliation. | LitMetric

The ultrasonic liquid phase exfoliation method has emerged as an essential research direction for graphene preparation due to its cost-effectiveness and ability to minimize defects. However, this method faces challenges related to processing throughput when scaled up for industrial production. In this study, industrial grade ultrasonic homogenizers with different frequencies and probe types were evaluated for the preparation of FLG. In each experiment, 1.5 kg of graphite slurry was treated using a cyclic ultrasonic system. The results demonstrated that the 25 kHz dumbbell probe produced the thinnest FLG with the lowest defect density. Moreover, applying a static pressure of 0.2 MPa in the cycle system enhanced the cavitation-induced exfoliation of graphite sheets, effectively reducing the layer count and distribution range of FLG. This method improves the conductivity while minimizing defect density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532260PMC
http://dx.doi.org/10.1016/j.ultsonch.2024.107103DOI Listing

Publication Analysis

Top Keywords

static pressure
8
defect density
8
impact ultrasonic
4
ultrasonic probe
4
probe type
4
type frequency
4
frequency static
4
pressure large-scale
4
large-scale graphene
4
graphene exfoliation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!