AI Article Synopsis

  • Melting in deep rocky areas of planets is crucial for various geological processes like planet formation, seismic activity, and magnetic field generation, which helps us understand how planets evolve.
  • The study investigates the melting curves and phase diagrams of CaO, a mineral relevant to Earth's lower mantle, using a deep learning model alongside molecular dynamics and first-principles methods.
  • Melting temperatures of CaO were determined at different pressures, revealing values of 975, 850, and 755 K at zero pressure, and the research provides melting phase diagrams for CaO across a pressure range of 0-135 GPa.

Article Abstract

Melting in the deep rocky parts of planets plays an important role in geological processes such as planet formation, seismicity, magnetic field generation, thermal convection, and crustal evolution. Such processes are the key way to understanding the dynamics of planetary interiors and the history as well as mechanisms of planetary evolution. We herein investigate the melting curves and pressure-temperature (-)-phase diagrams for CaO, a candidate mineral for the lower mantle, by means of the deep learning potential model. Using first-principles, molecular dynamics, and quasi-harmonic approximation, the reliability of the deep learning potential model is verified by calculating the high-temperature and high-pressure equations of state and phase transition pressures for the orthorhombic and tetragonal structures of CaO described by space groups 2 and 4̅2, respectively. The melting temperatures of 975, 850, and 755 K at zero pressure are obtained by the single-phase, void, and two-phase methods, respectively, and their melting temperatures are analyzed by the radial distribution function and mean-square displacement to analyze the melting process. Finally, the melting phase diagrams of CaO at 0-135 GPa were obtained by the two-phase method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c03074DOI Listing

Publication Analysis

Top Keywords

diagrams cao
12
deep learning
12
melting curves
8
phase diagrams
8
learning potential
8
potential model
8
melting temperatures
8
melting
6
investigation melting
4
curves phase
4

Similar Publications

Objective: Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD.

View Article and Find Full Text PDF

Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.

View Article and Find Full Text PDF

The droplet dynamics of asymmetrical impingement on moving ridged surface.

J Colloid Interface Sci

January 2025

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:

Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.

View Article and Find Full Text PDF

Secondary aluminum dross self-heating enhances hazardous waste vitrification.

Waste Manag

December 2024

School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China. Electronic address:

This study demonstrates the potential of secondary aluminum dross (SAD) to enhance the vitrifying hazardous waste incineration fly ash (FA) and bottom slag (BS). Based on the CaO-SiO-AlO ternary phase diagram, a liquid phase can be achieved at relatively low temperatures by carefully adjusting the AlO content, particularly when the CaO to SiO ratio is around 0.66.

View Article and Find Full Text PDF

Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!