Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photodynamic therapy (PDT) has emerged as a preferred nonsurgical treatment in clinical applications due to its capacity to selectively eradicate diseased tissues while minimizing damage to normal tissue. Nevertheless, its clinical efficacy is constrained by the limited penetration of visible light. Although near-infrared (NIR) lasers offer enhanced tissue penetration, the dearth of suitable photosensitizers and a pronounced imaging-treatment disparity pose challenges. Additionally, clinical implementation via optical fiber implantation carries infection risks and necessitates minimally invasive surgery, contradicting PDT's noninvasive advantage. In this study, we introduce a brilliant approach utilizing aggregation-induced emission luminogens (AIEgen) to develop a visible-light penetrator (VLP), coupled with wireless light emitting diodes (LEDs), enabling deep photodynamic therapy. We validate the therapeutic efficacy of this visible-light penetrator in tissues inaccessible to conventional PDT, demonstrating significant suppression of inflammatory diffusion using AIEgen TBPPM loaded within the VLP, which exhibits a transmittance of 86% in tissues with a thickness of 3 mm. This innovative visible-light penetrator effectively overcomes the substantial limitations of PDT in clinical settings and holds promise for advancing phototherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c10452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!