A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aggregation-Induced Emission Luminogen Based Wearable Visible-Light Penetrator for Deep Photodynamic Therapy. | LitMetric

Aggregation-Induced Emission Luminogen Based Wearable Visible-Light Penetrator for Deep Photodynamic Therapy.

ACS Nano

School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.

Published: October 2024

Photodynamic therapy (PDT) has emerged as a preferred nonsurgical treatment in clinical applications due to its capacity to selectively eradicate diseased tissues while minimizing damage to normal tissue. Nevertheless, its clinical efficacy is constrained by the limited penetration of visible light. Although near-infrared (NIR) lasers offer enhanced tissue penetration, the dearth of suitable photosensitizers and a pronounced imaging-treatment disparity pose challenges. Additionally, clinical implementation via optical fiber implantation carries infection risks and necessitates minimally invasive surgery, contradicting PDT's noninvasive advantage. In this study, we introduce a brilliant approach utilizing aggregation-induced emission luminogens (AIEgen) to develop a visible-light penetrator (VLP), coupled with wireless light emitting diodes (LEDs), enabling deep photodynamic therapy. We validate the therapeutic efficacy of this visible-light penetrator in tissues inaccessible to conventional PDT, demonstrating significant suppression of inflammatory diffusion using AIEgen TBPPM loaded within the VLP, which exhibits a transmittance of 86% in tissues with a thickness of 3 mm. This innovative visible-light penetrator effectively overcomes the substantial limitations of PDT in clinical settings and holds promise for advancing phototherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10452DOI Listing

Publication Analysis

Top Keywords

visible-light penetrator
16
photodynamic therapy
12
aggregation-induced emission
8
deep photodynamic
8
emission luminogen
4
luminogen based
4
based wearable
4
visible-light
4
wearable visible-light
4
penetrator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!