Clinical and genetic landscape of optic atrophy in 826 families: insights from 50 nuclear genes.

Brain

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Published: October 2024

Hereditary optic neuropathies (HON) are a group of diseases due to genetic defects either in mitochondria or in nuclear genomes. The increasing availability of genetic testing has expanded a broader genetic and phenotypic spectrum of HON than previously recognized. To provide systematic insight into the genetic and phenotypic landscape of HON attributed to 50 nuclear genes, we conducted genetic analysis on part of 4776 index patients with clinical diagnosis of HON following our previous study on 1516 probands with Leber hereditary optic neuropathy (LHON) and mitochondrial DNA variants. Exome sequencing was performed in 473 patients diagnosed with nuclear gene-related HON (nHON) and 353 cases with unsolved LHON. Sequencing and variant interpretation in 50 causative nuclear genes indicated that the diagnostic yield of exome sequencing for nHON was 31.50% (149/473), while it was markedly lower at 1.42% (5/353) for LHON patients without primary mtDNA mutations. The top five implicated genes causing nHON in our in-house cohort, OPA1, WFS1, FDXR, ACO2, and AFG3L2, account for 82.46% of mutations. Although OPA1 was the most prevalent causative gene of nHON in both our cohort (53.25%) and literature review (37.09%), the prevalence of OPA1, WFS1, and FDXR differed significantly between our in-house cohort and the literature review (P-adjusted<0.001). Fundus changes in nHON could be stratified into three categories, the most common is optic atrophy at the examination (78.79%), the rarest is LHON-like optic atrophy (3.64%), and the intermediate is optic atrophy with concurrent retinal degeneration (17.57%), which was an independent risk factor for visual prognosis in nHON. A systematic genotype-phenotype analysis highlighted different genetic contributions for ocular, extraocular neurological, and extraocular non-neurological phenotypes. In addition, systemic variant analysis at the individual gene level suggested a revised interpretation of the pathogenicity of a WFS1 heterozygous truncation variant. This study provides a panoramic summary of both the genetic and phenotypic profiles of HON in real-world studies and literature. The category for nHON fundus phenotypes is built for future studies on molecular mechanisms underlying HON and targeted therapies. In addition to routine ophthalmic examinations, careful examination of the extraocular symptoms and meaningful genetic counseling are warranted for patients with nHON.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awae324DOI Listing

Publication Analysis

Top Keywords

nuclear genes
12
hereditary optic
8
genetic phenotypic
8
exome sequencing
8
in-house cohort
8
opa1 wfs1
8
wfs1 fdxr
8
literature review
8
nuclear
5
hon
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!