Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All-solid-state batteries suffer from a loss of contact between the electrode and electrolyte particles, leading to poor cyclability. Here, a void-free ion-permeable interface between the solid-state polymer electrolyte and electrode is constructed in situ during cycling using charge/discharge voltage as the stimulus. During the charge-discharge, the permeation phase fills the voids at the interface and penetrates the electrode, forming strong bonds with the cathode and effectively mitigating the contact problem. Our all-solid-state potassium ion polymer batteries maintain high Coulombic efficiency more than 2000 cycles at a high operating voltage of 4.5 volt and stably cycle more than 500 cycles even at 4.6 volt. Our rational design for mitigating the contact problem is versatile, as demonstrated by the scalability of all-solid-state graphite-based polymer potassium-ion pouch cells and all-solid-state lithium-ion polymer batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488535 | PMC |
http://dx.doi.org/10.1126/sciadv.adr9602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!