Site-Specific Quadruple-Functionalised Antibodies.

Angew Chem Int Ed Engl

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Published: October 2024

Antibody-drug conjugates (ADCs) are a growing class of chemotherapeutic agents that have yielded striking clinical successes. However, the efficacy of ADCs often suffers from issues associated with tumor heterogeneity and resistance. To overcome these problems, a new generation of ADCs comprising a single monoclonal antibody with multiple different payloads attached, termed multi-payload ADCs, have been developed. Here we deploy multiple orthogonal site-specific protein modification strategies to generate highly homogeneous multi-functionalised antibody conjugates comprising up to four different functionalities installed at four unique sites on the antibody. This work, which includes the use of a site-specific cyclopropenone (CPO)-based reagent, represents the first example of a homogeneous multi-payload ADC with a payload count greater than two, and thereby facilitates the development of the next generation of ADCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417620DOI Listing

Publication Analysis

Top Keywords

generation adcs
8
adcs
5
site-specific quadruple-functionalised
4
quadruple-functionalised antibodies
4
antibodies antibody-drug
4
antibody-drug conjugates
4
conjugates adcs
4
adcs growing
4
growing class
4
class chemotherapeutic
4

Similar Publications

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Background: Breast cancer is the most common malignant tumor among women, with an increasing incidence each year. The subtypes of human epidermal growth factor receptor 2 (HER2)-negative breast cancer, classified as HER2-low and HER2-zero based on HER2 receptor expression, show differences in clinical characteristics, therapeutic approaches, and prognoses. Distinguishing between these subtypes is clinically valuable as it can impact treatment strategies, including the use of next-generation antibody-drug conjugates (ADCs) targeting HER2-low tumors.

View Article and Find Full Text PDF

Impacts of genomic alterations on the efficacy of HER2-targeted antibody-drug conjugates in patients with metastatic breast cancer.

J Transl Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.

Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!