AI Article Synopsis

  • Milky spots, structures in the omentum, contain primarily B and T lymphocytes and macrophages, and play a role in immune response during infections such as Schistosoma mansoni.
  • In infected mice, these milky spots show significant activation, marked by an increase in eosinophils and changes in leukocyte populations over time, including the expansion of B1b cells.
  • Despite being known for years, the full range of cells and functions of milky spots in immune responses remains poorly understood, highlighting the need for further research.

Article Abstract

The milky spots are structures found in the omentum of humans and other vertebrates, representing a fraction of the lymphomyeloid tissue associated with the celom. They majorly consist of B lymphocytes, T lymphocytes, and macrophages. Also found in smaller quantities are mesothelial, stromal, dendritic, and rare mast cells. In an experimental model of Schistosoma mansoni infection, there is significant activation of the omentum and milky spots, which exhibit numerous eosinophils. Despite being described for many years, the complete profile of cells found in milky spots and their functions remains largely unexplored. Here, we evaluate the leukocyte populations of the milky spots in homeostasis and a murine model of Schistosoma mansoni infection. The histopathological characterizations, phenotypic profile analysis, and characterization of the eosinophilic potential of progenitors and precursors comparing the milky spots with the spleen and bone marrow showed significant activation of milky spots in infected mice, with changes in the profile over the analyzed times, showing signs of migration and activation of eosinophils, with local eosinopoiesis and maintenance of the eosinophilic population. In naive mice, B1a and B1b cells comprise only a small fraction of B lymphocytes. However, B1b cells expand significantly during infection, peaking at 60 DPI before stabilizing by 90 DPI. B1a cells also increase initially but decrease over time. The behavior of milky spots differs from other primary and secondary lymphoid organs, acting as a central lymphoid organ in cavity immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxae064DOI Listing

Publication Analysis

Top Keywords

milky spots
32
milky
8
spots
8
spleen bone
8
bone marrow
8
model schistosoma
8
schistosoma mansoni
8
mansoni infection
8
b1b cells
8
cells
5

Similar Publications

Article Synopsis
  • Peritoneal dissemination is frequently observed in patients with gynecologic and gastrointestinal cancers, and there's growing evidence that regional immunity plays a crucial role in cancer treatment.
  • This study investigates an intraperitoneal cell-based vaccine using silicified ovarian cancer cells to improve survival rates, exploring immune mechanisms and vaccine effects in mouse models.
  • Results show that the vaccine activates myeloid cells, leading to T cell-mediated tumor clearance and the development of systemic immunity, suggesting that intraperitoneal delivery could enhance cancer treatment efficacy, especially in metastatic colorectal cancer.
View Article and Find Full Text PDF

Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8 T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells.

View Article and Find Full Text PDF

The milky spots are structures found in the omentum of humans and other vertebrates, representing a fraction of the lymphomyeloid tissue associated with the celom. They majorly consist of B lymphocytes, T lymphocytes, and macrophages. Also found in smaller quantities are mesothelial, stromal, dendritic, and rare mast cells.

View Article and Find Full Text PDF
Article Synopsis
  • An unknown leaf spot disease affecting ginger was reported in Yongning District, Nanning, China, with symptoms including yellow spots and grey-white lesions, leading to leaf necrosis in 20-30% of plants.
  • Pathogen isolation involved collecting diseased leaves, disinfecting them, and growing samples on nutrient agar, resulting in three identified Enterobacter isolates (GL1, GL2, GL3) that showed distinct biochemical characteristics.
  • Genetic analysis of the isolates' 16S rDNA and other genes revealed a close match to Enterobacter quasiroggenkampii, and a phylogenetic tree was constructed based on the concatenated sequences to further confirm their classification.
View Article and Find Full Text PDF

Background: Publications report that all mammals have two omenta, namely, lesser omentum and greater omentum. Basically, these organs, which share the same name except for the adjective "lesser" or "greater," should not differ from each other. However, no clear description of the structure of the lesser omentum, as well as comparative morphological analysis between the lesser and greater omenta have been found in the literature, which necessitates a thorough investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: