A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation.

Cell Rep

Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Published: November 2024

The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648574PMC
http://dx.doi.org/10.1016/j.celrep.2024.114889DOI Listing

Publication Analysis

Top Keywords

mitochondrial unfolded
8
unfolded protein
8
dve-1
8
role dve-1
8
lifespan extension
8
nuclear accumulation
8
protein response-independent
4
role
4
response-independent role
4
dve-1 longevity
4

Similar Publications

Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy.

View Article and Find Full Text PDF

eIF2α Phosphorylation-ATF4 Axis-Mediated Transcriptional Reprogramming Mitigates Mitochondrial Impairment During ER Stress.

Mol Cells

January 2025

Basic-Clinical Convergence Research Center, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea. Electronic address:

Eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, which regulates all three unfolded protein response pathways, helps maintain cellular homeostasis and overcome endoplasmic reticulum (ER) stress through transcriptional and translational reprogramming. However, transcriptional regulation of mitochondrial homeostasis by eIF2α phosphorylation during ER stress is not fully understood. Here, we report that the eIF2α phosphorylation-activating transcription factor 4 (ATF4) axis is required for expression of multiple transcription factors (TFs) including nuclear factor erythroid 2-related factor 2 (Nrf2) and their target genes responsible for mitochondrial homeostasis during ER stress.

View Article and Find Full Text PDF

Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.

View Article and Find Full Text PDF

With the increasing incidence of non-hereditary Parkinson's disease (PD), research into the involvement of specific environmental factors, in addition to aging, has become more prominent. The effects of microplastic exposure on public health have gained increased attention as it is known to cause a range of neurotoxic changes, some of which are similar to the pathological features of PD. We carried out low-dose microplastic exposure experiments on mice and Caenorhabditis elegans models and implemented a survey regarding the utilization of plastic products in the population.

View Article and Find Full Text PDF

This study investigates the role of Fundc1 in cardiac protection under high-altitude hypoxic conditions and elucidates its underlying molecular mechanisms. Using cardiomyocyte-specific knockout ( ) mice, we demonstrated that deficiency exacerbates cardiac dysfunction under simulated high-altitude hypoxia, manifesting as impaired systolic and diastolic function. Mechanistically, we identified that Fundc1 regulates cardiac function through the mitochondrial unfolded protein response (mito-UPR) pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!