In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-024-03939-8 | DOI Listing |
J Agric Food Chem
January 2025
Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India.
Rice blast disease, instigated by (), significantly impedes global rice production. Targeting the signaling protein, cAMP-Protein Kinase A (CPKA), which facilitates appressorium development and host penetration, this study explores the potential inhibitory effects of natural compounds. Virtual screening, molecular docking and text mining approaches were used to find the nimonol and curcumin that inhibit the CPKA protein.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
The formation of inclusion complexes between Ginsenoside Rg3 and cyclodextrins represents a promising strategy to enhance the solubility of G-Rg3. Nevertheless, the molecular mechanisms underlying the interaction between G-Rg3 and cyclodextrins have yet to be fully elucidated. In this study, we employed a combination of molecular simulation and experimental methodologies to identify the most effective solubilizing carriers among G-Rg3, β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and 2,6-dimethyl-β-cyclodextrin (DM-β-CD).
View Article and Find Full Text PDFAging Cell
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!