Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional (3D) free-standing nanostructures based on electron-beam lithography (EBL) have potential applications in many fields with extremely high patterning resolution and design flexibility with direct writing. In numerous EBL processes designed for the creation of 3D structures, the multilayer resist system is pivotal due to its adaptability in design. Nevertheless, the compatibility of solvents between different layers of resists often restricts the variety of feasible multilayer combinations. This paper introduces an innovative approach to address the bottleneck issue by presenting a novel concept of multilayer resist dry stacking, which is facilitated by a near-zero adhesion strategy. The poly(methyl methacrylate) (PMMA) film is stacked onto the hydrogen silsesquioxane (HSQ) resist using a dry peel and release technique, effectively circumventing the issue of HSQ solubilization by PMMA solvents typically encountered during conventional spin-coating procedures. Simultaneously, a dry lift-off technique can be implemented by eschewing the use of organic solvents during the wet process. This pioneering method enables the fabrication of high-resolution 3D free-standing plasmonic nanostructures and intricate 3D free-standing nanostructures. Finally, this study presents a compelling proof of concept, showcasing the integration of 3D free-standing nanostructures, fabricated via the described technique, into the realm of Fabry-Perot cavity resonators, thereby highlighting their potential for practical applications. This approach is a promising candidate for arbitrary 3D free-standing nanostructure fabrication, which has potential applications in nanoplasmonics, nanoelectronics, and nanophotonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad8359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!