Enriched biochar with improved properties and functionality can play a significant role in providing sustainable solutions for mitigating heavy metal contamination in soil. In this experiment, the effects of solid and enriched biochars (potassium-enriched biochar (BC-K), magnesium-enriched biochar (BC-Mg), both individually and combined) were examined on soil microbial and enzyme activities, as well as nutrient uptake by basil plants cultivated in a soil with three levels of arsenic (nontoxic, 50 mg As kg soil, and 100 mg As kg soil). Biochar-related treatments, increased soil organic matter (65-76%), while decreased availability of arsenic (6-55%) in the soil. The microbial biomass carbon (by about 123%) and soil basal respiration (by about 256%), and soil enzymatic activities (β-glucosidase, urease, alkaline phosphatase, and dehydrogenase) were enhanced by enriched biochars under arsenic toxicity. The solid and particularly enriched biochars decreased arsenic content and improved nitrogen and phosphorus contents of roots and shoots, root length, root activity, and root and shoot biomass in basil plants. Therefore, it is conceivable to suggest that enriched biochars are superior treatments for improving nutrient absorption rates and basil growth under arsenic toxicity through decreasing arsenic mobility and increasing soil microbial activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2024.2416997 | DOI Listing |
Heliyon
January 2025
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, 7867161167, Iran.
This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:
Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFEnviron Res
January 2025
Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:
Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!