AI Article Synopsis

  • Enriched biochars, like potassium- and magnesium-enriched variants, can reduce heavy metal contamination in soil while enhancing microbial and enzyme activities.
  • The addition of biochar improved soil organic matter and significantly decreased arsenic availability, leading to better plant growth, particularly in basil.
  • Overall, the use of enriched biochars can enhance nutrient uptake and promote healthier plant development even in soils contaminated with arsenic.

Article Abstract

Enriched biochar with improved properties and functionality can play a significant role in providing sustainable solutions for mitigating heavy metal contamination in soil. In this experiment, the effects of solid and enriched biochars (potassium-enriched biochar (BC-K), magnesium-enriched biochar (BC-Mg), both individually and combined) were examined on soil microbial and enzyme activities, as well as nutrient uptake by basil plants cultivated in a soil with three levels of arsenic (nontoxic, 50 mg As kg soil, and 100 mg As kg soil). Biochar-related treatments, increased soil organic matter (65-76%), while decreased availability of arsenic (6-55%) in the soil. The microbial biomass carbon (by about 123%) and soil basal respiration (by about 256%), and soil enzymatic activities (β-glucosidase, urease, alkaline phosphatase, and dehydrogenase) were enhanced by enriched biochars under arsenic toxicity. The solid and particularly enriched biochars decreased arsenic content and improved nitrogen and phosphorus contents of roots and shoots, root length, root activity, and root and shoot biomass in basil plants. Therefore, it is conceivable to suggest that enriched biochars are superior treatments for improving nutrient absorption rates and basil growth under arsenic toxicity through decreasing arsenic mobility and increasing soil microbial activities.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2024.2416997DOI Listing

Publication Analysis

Top Keywords

enriched biochars
16
basil plants
12
arsenic toxicity
12
soil microbial
12
soil
11
enzyme activities
8
nutrient uptake
8
uptake basil
8
solid enriched
8
arsenic
7

Similar Publications

This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.

View Article and Find Full Text PDF

Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding.

J Colloid Interface Sci

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:

Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield.

Environ Res

January 2025

Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:

Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.

View Article and Find Full Text PDF

Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!