A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of automatic tube current modulation in a CT scanner using a customised homogeneous phantom. | LitMetric

The introduction of automatic tube current modulation (ATCM) has resulted in complex relationships between scanner parameters, patient body habitus, radiation dose, and image quality. ATCM adjusts tube current based on x-ray attenuation variations in the scan region, and overall patient dose depends on a combination of factors. This work aims to develop mathematical models that predict CT radiation dose and image noise in terms of attenuating diameter and all relevant scanner parameters.A homogenous phantom, equipped with the features to conduct discrete and continuous adaption tests, was developed to model ATCM in a Philips CT scanner. Scanner parameters were varied based on theoretical dose relationships, and a MATLAB script was developed to extract data from DICOM images. R statistical software was employed for data analysis, plotting, and regression modelling.Phantom data provided the following insights: Median tube current decreased by 81% as tube potential varied from 80 kVp to 140 kVp. Doubling the DoseRight Index (DRI) from 12 to 24, at 24 cm diameter, produced a 294% increase in mA and a 46% decrease in noise. Mean mA increased by 53% whilst mean noise increased by 5.7% as helical pitch increased from 0.6 to 0.925. Changing rotation time from 0.33s to 0.75s gave a 56% reduction in mean mA and no change in image noise. Increasing detector collimation () resulted in higher tube currents and lower output image noise values, asandwere varied independently. Interpreting these results to apply transformations relevant to each independent variable produced models for tube current and noise with adjusted R-squared values of 0.965 and 0.912, respectively.The models developed more accurately predict radiation dose and image quality for specific patients and scanner settings. They provide imaging professionals with a practical tool to optimize scan protocols according to patient diameters and clinical objectives.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ad857aDOI Listing

Publication Analysis

Top Keywords

tube current
20
radiation dose
12
dose image
12
image noise
12
automatic tube
8
current modulation
8
scanner parameters
8
image quality
8
predict radiation
8
noise increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!