A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The dual timescales of gait adaptation: initial stability adjustments followed by subsequent energetic cost adjustments. | LitMetric

AI Article Synopsis

  • - Gait adaptation in walking helps maintain balance, avoid obstacles, and prevent injuries, but the specific processes involved during adaptation still need further study.
  • - In a study with 17 young adults, researchers found that stability adapts quickly (under 1 minute), while other factors like mechanical work and metabolic rate adapt over a longer period (3.5-11.2 minutes) during walking adjustments.
  • - The results suggest that stability influences early gait changes and energy efficiency plays a larger role in later adjustments; also, individuals with certain aerobic capacity levels show different adaptation responses, indicating metabolic effects on gait.

Article Abstract

Gait adaptation during bipedal walking allows people to adjust their walking patterns to maintain balance, avoid obstacles and avoid injury. Adaptation involves complex processes that function to maintain stability and reduce energy expenditure. However, the processes that influence walking patterns during different points in the adaptation period remain to be investigated. We assessed split-belt adaptation in 17 young adults aged 19-35. We also assessed individual aerobic capacity to understand how aerobic capacity influences adaptation. We analyzed step lengths, step length asymmetry (SLA), mediolateral margins of stability, positive, negative and net mechanical work rates, as well as metabolic rate during adaptation. Dual-rate exponential mixed-effects regressions estimated the adaptation of each measure over two timescales; results indicate that mediolateral stability adapts over a single timescale in under 1 min, whereas mechanical work rates, metabolic rate, step lengths and SLA adapt over two distinct timescales (3.5-11.2 min). We then regressed mediolateral margins of stability, net mechanical work rate and metabolic rate on SLA during early and late adaptation phases to determine whether stability drives early adaptation and energetic cost drives late adaptation. Stability predicted SLA during the initial rapid onset of adaptation, and mechanical work rate predicted SLA during the latter part of adaptation. Findings suggest that stability optimization may contribute to early gait changes and that mechanical work contributes to later changes during adaptation. A final sub-analysis showed that aerobic capacity levels <36 and >43 ml kg-1 min-1 resulted in greater SLA adaptation, underscoring the metabolic influences on gait adaptation. This study illuminates the complex interplay between biomechanical and metabolic factors in gait adaptation, shedding light on fundamental mechanisms underlying human locomotion.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.249217DOI Listing

Publication Analysis

Top Keywords

mechanical work
20
adaptation
17
gait adaptation
16
aerobic capacity
12
metabolic rate
12
stability
8
energetic cost
8
walking patterns
8
step lengths
8
mediolateral margins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!