Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Umbilical cord blood (CB) is a valuable source of haematopoietic stem/progenitor cells (HSCs) and is known for the therapeutic use of these cells in treating blood disorders. However, challenges such as a high running cost and the increasing availability of treatment alternatives have made the effort to sustain CB banks difficult. This prompts the need to revisit the current CB banking initiatives to retain the relevance in this ever‑changing era parallel to the fast‑pacing development of cell‑based therapeutic technology. Cellular reprogramming has shown to have successfully converted adult somatic cells into human induced pluripotent stem cells (hiPSCs), which promise wider applications in regenerative medicine, personalized treatment and tissue engineering. CB is the youngest, primitive adult cell source that has not been affected by any prior, acquired disorders. Hence, using CB as a source of candidate cells for generating hiPSCs may be a new opportunity for banking, albeit with challenges. The present review summarizes the rise and fall of CB usage and banking for clinical therapy, the considerations in reprogramming CB into hiPSCs, the safety concerns regarding the use of hiPSC‑derived cells in clinical transplantation and the prospect of using CB‑derived hiPSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2024.5438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!