Polyethylene glycol (PEG) is a common surface modification for lipid nanoparticles (LNPs) to improve their stability and in vivo circulation time. However, the impact of PEGylation on LNP cellular uptake remains poorly understood. To tackle this issue, we systematically compared plain and PEGylated LNPs by combining dynamic light scattering, electrophoretic light scattering, and synchrotron small-angle X-ray scattering (SAXS) that unveils a striking similarity in size and core structure but a significant reduction in surface charge. Upon administration to human embryonic kidney (HEK 293) cells, plain and PEGylated LNPs were internalized through different endocytic routes, as revealed by spatiotemporal correlation spectroscopy. An imaging-derived mean square displacement (iMSD) analysis shows that PEGylated LNPs exhibit a significantly stronger preference for caveolae-mediated endocytosis (CAV) and clathrin-mediated endocytosis (CME) pathways compared to plain LNPs, with these latter being better tailored to MCR-dependent internalization and trafficking. This suggests that PEG plays a crucial role in directing LNPs toward specific cellular uptake routes. Further studies should explore how PEG-mediated endocytosis impacts intracellular trafficking and ultimately translates to therapeutic efficacy, guiding the design of next-generation LNP delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480925PMC
http://dx.doi.org/10.1021/acsptsci.4c00419DOI Listing

Publication Analysis

Top Keywords

pegylated lnps
12
lipid nanoparticles
8
revealed spatiotemporal
8
spatiotemporal correlation
8
correlation spectroscopy
8
cellular uptake
8
compared plain
8
plain pegylated
8
light scattering
8
lnps
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!