Resonant Ring with a Gain of 36 for Use with a 1 MW 110 GHz Gyrotron.

J Infrared Millim Terahertz Waves

Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St, Cambridge, MA 02139, USA.

Published: August 2024

A 110 GHz quasi-optical ring resonator, designed for use with a 1 MW pulsed gyrotron, has been built and successfully tested using a 100 mW solid-state source. A low reflectance (2.4%) input coupler and a low-loss, four-mirror ring demonstrated a compression ratio, defined as the ratio of output to input power, of 36. The 6 ns output pulses were generated from the 2 m length ring using a silicon laser-driven semiconductor switch (LDSS). The quasi-optical ring resonator was designed with large waist sizes so that input pulses of up to 1 MW will stay under the 35 kV/cm electric field limit for ionization in ambient air. Maximum compression gain was achieved by matching the input coupling fraction to the round trip loss in the ring, achieving close to critical coupling. The experimental output pulse shape obtained after firing the LDSS was modeled using the reflectance, transmittance, and absorptance of the switch vs. time and vs. laser pulse fluence, with good agreement found with theory. The timing for the peak energy efficiency of 32% was found and the main loss mechanism limiting that efficiency was found to be the absorptance in the silicon wafer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485415PMC
http://dx.doi.org/10.1007/s10762-024-00991-0DOI Listing

Publication Analysis

Top Keywords

110 ghz
8
quasi-optical ring
8
ring resonator
8
resonator designed
8
ring
5
resonant ring
4
ring gain
4
gain 110
4
ghz gyrotron
4
gyrotron 110
4

Similar Publications

This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.

View Article and Find Full Text PDF

Flexible, stretchable multifunctional silver nanoparticles-decorated cotton textile based on amyloid-like protein aggregation for electrothermal and photothermal dual-driven wearable heater.

Int J Biol Macromol

December 2024

State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.

View Article and Find Full Text PDF

Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.

View Article and Find Full Text PDF

The rise of CubeSats has unlocked opportunities for cutting-edge space missions with reduced costs and accelerated development timelines. CubeSats necessitate a high-gain antenna that can fit within a tightly confined space. This paper is primarily concerned with designing a compact Ku-band offset cylindrical reflector antenna for a CubeSat-based Earth Observation mission, with the goal of monitoring Arctic snow and sea ice.

View Article and Find Full Text PDF

Structural electromagnetic shielding materials are required to withstand high stress and electromagnetic interference in extreme environments. In this paper, a nano-magnetic Heusler phase with desired structure parameters was successfully obtained in a copper matrix by employing a multi-objective driving design strategy. The resulting copper alloy exhibits a yield strength of up to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!