Reptile feeding strategies encompass a wide variety of diets and accompanying diversity in methods for subduing prey. One such strategy, the use of venom for prey capture, is found in living reptile clades like helodermatid (beaded) lizards and some groups of snakes, and venom secreting glands are also present in some monitor lizards and iguanians. The fossil record of some of these groups shows strong evidence for venom use, and this feeding strategy also has been hypothesized for a variety of extinct reptiles (., archosauromorphs, anguimorphs, and a sphenodontian). However, evidence of systems for venom delivery in extinct groups and its evolutionary origins has been scarce, especially when based on more than isolated teeth. Here, we describe a potentially venomous new reptile, gen. et sp. nov., from a partial left dentary recovered from the Sonsela Member of the Chinle Formation (middle Norian, Upper Triassic) of northeastern Arizona, U.S.A. The three dentary teeth have apices that are distally reclined relative to their bases and the tip of the posteriormost tooth curves mesially. The teeth show subthecodont implantation and are interspaced by empty sockets that terminate above the Meckelian canal, which is dorsoventrally expanded posteriorly. Replacement tooth sockets are positioned distolingually to the active teeth as in varanid-like replacement. We identify this new specimen as a diapsid reptile based on its monocuspid teeth that lack carinae and serrations. A more exclusive phylogenetic position within Diapsida is not well supported and remains uncertain. Several features of this new taxon, such as the presence of an intramandibular septum, are shared with some anguimorph squamates; however, these likely evolved independently. The teeth of the new taxon are distinctively marked by external grooves that occur on the entire length of the crown on the labial and lingual sides, as seen in the teeth of living beaded lizards. If these grooves are functionally similar to those of beaded lizards, which use the grooves to deliver venom, this new taxon represents the oldest known reptile where venom-conducting teeth are preserved within a jaw. The teeth of the new species are anatomically distinct from and ~10x smaller than those of the only other known Late Triassic hypothesized venomous reptile, , supporting venom use across multiple groups of different body size classes. This new species represents the third Late Triassic reptile species to possibly have used envenomation as a feeding (and/or defensive) strategy, adding to the small number of venomous reptiles known from the Mesozoic Era.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485104 | PMC |
http://dx.doi.org/10.7717/peerj.18279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!