ENHANCING 3T RETINOTOPIC MAPS USING DIFFEOMORPHIC REGISTRATION.

Proc IEEE Int Symp Biomed Imaging

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Published: May 2024

Retinotopic mapping aims to uncover the relationship between visual stimuli on the retina and neural responses on the visual cortical surface. This study advances retinotopic mapping by applying diffeomorphic registration to the 3T NYU retinotopy dataset, encompassing analyze-PRF and mrVista data. Diffeomorphic Registration for Retinotopic Maps (DRRM) quantifies the diffeomorphic condition, ensuring accurate alignment of retinotopic maps without topological violations. Leveraging the Beltrami coefficient and topological condition, DRRM significantly enhances retinotopic map accuracy. Evaluation against existing methods demonstrates DRRM's superiority on various datasets, including 3T and 7T retinotopy data. The application of diffeomorphic registration improves the interpretability of low-quality retinotopic maps, holding promise for clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486508PMC
http://dx.doi.org/10.1109/isbi56570.2024.10635556DOI Listing

Publication Analysis

Top Keywords

retinotopic maps
16
diffeomorphic registration
16
registration retinotopic
8
retinotopic mapping
8
retinotopic
6
diffeomorphic
5
enhancing retinotopic
4
maps
4
maps diffeomorphic
4
registration
4

Similar Publications

EphA4 mediates ephrinB1-dependent adhesion in retinal ganglion cells.

J Neurosci

December 2024

Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH). Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550 (Spain)

Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion.

View Article and Find Full Text PDF

ENHANCING 3T RETINOTOPIC MAPS USING DIFFEOMORPHIC REGISTRATION.

Proc IEEE Int Symp Biomed Imaging

May 2024

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Retinotopic mapping aims to uncover the relationship between visual stimuli on the retina and neural responses on the visual cortical surface. This study advances retinotopic mapping by applying diffeomorphic registration to the 3T NYU retinotopy dataset, encompassing analyze-PRF and mrVista data. Diffeomorphic Registration for Retinotopic Maps (DRRM) quantifies the diffeomorphic condition, ensuring accurate alignment of retinotopic maps without topological violations.

View Article and Find Full Text PDF

The occipital place area (OPA) is a scene-selective region on the lateral surface of human occipitotemporal cortex that spatially overlaps multiple visual field maps, as well as portions of cortex that are not currently defined as retinotopic. Here we combined population receptive field modeling and responses to scenes in a representational similarity analysis (RSA) framework to test the prediction that the OPA's visual field map divisions contribute uniquely to the overall pattern of scene selectivity within the OPA. Consistent with this prediction, the patterns of response to a set of complex scenes were heterogeneous between maps.

View Article and Find Full Text PDF

A spatial map: a propitious choice for constraining the binding problem.

Front Comput Neurosci

July 2024

Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States.

Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently.

View Article and Find Full Text PDF

Astroglial networks control visual responses of superior collicular neurons and sensory-motor behavior.

Cell Rep

July 2024

Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France. Electronic address:

Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!