Over the past two decades, nanotechnology has captured significant interest, especially in the medical field, where the unique characteristics of nanoscale particles offer substantial advantages. The family of nanosized materials, specifically iron oxide nanoparticles (IONPs), has emerged as promising due to their magnetic properties, biocompatibility, and substantial surface area for therapeutic molecule attachment. The review explores various strategies to enhance the antibacterial properties of IONPs, such as metal doping, which modifies their physicochemical, biological, electrical, and optical properties. Metal-doped IONPs, including those with nickel, copper, zinc, selenium, molybdenum, gold, and others, have shown that they effectively eradicate viruses and bacteria. The mechanisms behind their enhanced antibacterial activity involve generating reactive oxygen species (ROS), inhibiting antibiotic-resistant genes, disrupting cell walls and DNA, dysfunction of efflux pumps, and internalizing nanoparticles. The review also addresses the potential toxicity of IONPs, highlighting factors such as their dimension, form, and outermost layers, which change how they affect the overall condition of cellular structures. Surface coatings using polymers and essential oils are among the strategies being investigated as potential ways to reduce toxicity. This review additionally looks into IONPs' drug delivery potential for antibiotics and antifungals. The integration of IONPs with various pharmaceutical compounds and their controlled release mechanisms are also detailed. The review concludes by offering a positive outlook on the potential enhancements and prospects of IONPs. Challenges in synthesis technologies, size tuning, and surface alteration are acknowledged, emphasizing the need for continued research to fully harness the capabilities of IONPs in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484742 | PMC |
http://dx.doi.org/10.7759/cureus.69556 | DOI Listing |
J Environ Manage
January 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:
As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.
View Article and Find Full Text PDFWaste Manag
January 2025
VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada.
This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
In the resistance spot-welding (RSW) of galvanized complex phase (CP) steel, liquid metal embrittlement (LME) may occur, deteriorating the welded joint's performance. Based on the Auto/Steel Partnership (A/SP) standard, the joints of galvanized CP steel welded with a welding current from 7.0 kA to 14.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania.
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!