A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prognostic prediction of breast cancer patients using machine learning models: a retrospective analysis. | LitMetric

AI Article Synopsis

  • This study focused on using machine learning to predict prognosis in breast cancer patients by analyzing electronic medical records from 6,477 individuals, identifying 15 key clinical features related to survival.
  • Eight different algorithms, including XGBoost, were tested, with XGBoost being the most effective, achieving an AUC of 0.813 and outperforming existing prognostic models.
  • The findings suggest that incorporating machine learning into clinical practice can enhance decision-making for personalized treatment strategies in breast cancer care.

Article Abstract

Background: Breast cancer is a common and complex disease, with various clinical features affecting prognosis. Accurate prediction of prognosis is essential for guiding personalized treatment strategies. This study aimed to develop machine learning models for predicting prognosis in breast cancer patients using retrospective data.

Methods: A total of 6,477 patients from Affiliated Sir Run Run Shaw Hospital were included, and their electronic medical records (EMRs) were thoroughly examined to identify 15 clinical features significantly associated with breast cancer survival. We employed eight different machine learning algorithms, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), to develop and evaluate the predictive performance of the models. In addition, to investigate the sensitivity of different training/testing set radio to model performance, we examined five sets of ratios: 50:50, 60:40, 70:30, 80:20, 90:10.

Results: Among these models, XGBoost demonstrated the highest performance with receiver operating characteristic (ROC) area under the curve (AUC) of 0.813, accuracy of 0.739, sensitivity of 0.815, and specificity of 0.735. Further statistical analysis identified several significant predictors of prognosis, including age, tumor size, lymph node status, and hormone receptor status. The XGBoost model was found to exhibit superior predictive power compared to established prognostic models such as the Nottingham Prognostic Index (NPI) and Predict Breast. Based on the successful performance of the XGBoost model, we developed a prognosis prediction tool specifically designed for breast cancer, providing valuable insights to clinicians, and aiding them in making informed treatment decisions tailored to individual patients.

Conclusions: Our study highlights the potential of machine learning models in accurately predicting prognosis for breast cancer patients, ultimately facilitating personalized treatment strategies. Further research and validation are warranted to fully integrate these models into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480873PMC
http://dx.doi.org/10.21037/gs-24-106DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
machine learning
16
cancer patients
12
learning models
12
clinical features
8
personalized treatment
8
treatment strategies
8
predicting prognosis
8
prognosis breast
8
xgboost model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!