Background: Neonatologists and clinical neurophysiologists face challenges with the current electrodes used for long-duration amplitude-integrated electroencephalography (aEEG) in neonatal intensive care units (NICU), limiting the capacity to diagnose brain damage.

Objectives: The objectives of this study were to develop methods for comparing the performance of different electrodes to be used in aEEG. The comparison was done between a newly designed neonate-specific electrode, aCUP-E, with commercial liquid gel electrodes used in amplitude-integrated electroencephalography (aEEG). The comparison included impedance stability, electrode survival, recording quality, usability, and satisfaction of NICU staff.

Methods: aEEG recordings with bipolar montage was used, with one hemisphere fitted with commercial electrodes and the other with aCUP-E electrodes, alternated among subjects. Continuous impedance and raw EEG data were collected over a minimum of 24 h, and signal processing was performed using Python and MATLAB.

Main Results: aCUP-E electrodes demonstrated superior performance, including: Increased impedance stability and electrode survival, enhanced recording quality with fewer artifacts, high correlation in signal capture between electrodes during optimal brain activity segments, higher signal-to-noise ratio (SNR) across varying impedance levels, greater staff satisfaction and ease of use. Moreover, Kaplan-Meier curves indicated a higher survival rate for aCUP-E electrodes over 24 h compared to commercial electrodes. Impedance variability analysis showed statistically significant stability improvements for aCUP-E.

Conclusion: aCUP-E electrodes outperform commercial liquid gel electrodes in impedance stability, electrode survival, and recording quality. These results suggest that aCUP-E electrodes could significantly enhance aEEG utilization in diagnosing and treating neonatal brain conditions in NICUs. Future improvements to the aCUP-E electrode may further reduce artifacts and increase electrode longevity, potentially leading to a significant improvement in neonatal brain monitoring by means of aEEG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484018PMC
http://dx.doi.org/10.3389/fped.2024.1452862DOI Listing

Publication Analysis

Top Keywords

acup-e electrodes
20
electrodes
13
liquid gel
12
gel electrodes
12
impedance stability
12
stability electrode
12
electrode survival
12
recording quality
12
acup-e
8
electrode acup-e
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!