Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483584PMC
http://dx.doi.org/10.1093/braincomms/fcae326DOI Listing

Publication Analysis

Top Keywords

human tau
16
tau pathology
16
mouse model
12
tau
8
rtkhomo mouse
8
tau deposition
8
model
5
human
5
pathology
5
novel tauopathy
4

Similar Publications

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Factors influencing changes in the quality of life of the Hainan migratory population with hypertension: a survey of the Chengmai mangrove bay community.

BMC Public Health

January 2025

School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.

Background: Hainan is a tropical island in China with a large migratory population. Study have reported that the blood pressure of Hainan elderly hypertensive migratory population decreased significantly, which may be related to the improvement of environment and quality of life (QoL). Understanding the changes of QoL of these people before and after coming to Hainan and its influencing factors can provide a basis for the prevention and control of hypertension.

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is a rare neurodegenerative disorder characterized by physical, cognitive, and behavioral impairments. The PSP Rating Scale (PSPRS) is a widely used and validated, clinical scale to monitor disease progression. Here we show the modification of PSPRS to improve clinical meaningfulness and sensitivity.

View Article and Find Full Text PDF

Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.

View Article and Find Full Text PDF

Objective: The Clarity AD phase III trial showed that lecanemab reduced amyloid markers in early Alzheimer's disease (AD) and resulted in less decline on measures of cognition and function than placebo. Herein, we aimed to characterize amyloid-β (Aβ) protofibril (PF) captured by lecanemab in human cerebrospinal fluid (CSF) from living participants with different stages in AD, which enable an enhanced understanding of the dynamic changes of lecanemab-associated Aβ-PF (Lec-PF) in vivo.

Methods: We newly developed a unique and highly sensitive immunoassay method using lecanemab that selectively captures Lec-PF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!