Numerous studies have reported in the past that the use of protein-encoding DNA hydrogels as templates for cell-free protein synthesis (CFPS) leads to better yields than the use of conventional templates such as plasmids or PCR fragments. Systematic investigation of different types of bulk materials from pure DNA hydrogels and DNA hydrogel composites using a commercially available CFPS kit showed no evidence of improved expression efficiency. However, protein-coding DNA hydrogels were advantageously used in microfluidic reactors as immobilized templates for repetitive protein production, suggesting that DNA-based materials offer potential for future developments in high-throughput profiling or rapid in situ characterization of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202414480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!