Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669743 | PMC |
http://dx.doi.org/10.1002/jimd.12798 | DOI Listing |
Arch Gerontol Geriatr
December 2024
Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder marked by the progressive loss of dopamine neurons in the substantia nigra. α-synuclein (SNCA) aggregation-induced microglia activation and neuroinflammation play vital role in the pathology of PD. Our previous studies showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) could inhibit SNCA accumulation and Lipopolysaccharides (LPS)-induced neuroinflammation, but the specific molecular mechanism remains unclear.
View Article and Find Full Text PDFPhytopathology
January 2025
University of Florida, Microbiology & Cell Science, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, Florida, United States, 32610;
(L.) Moench is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen , the causal agent of anthracnose.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Background: Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function.
Objective: This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD.
Aging Cell
January 2025
Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
Cinnamon, renowned for its aromatic flavor, represents one of the most widely used spices worldwide. Cinnamon is also considered beneficial to human health with therapeutic potential for treating various diseases, ranging from diabetes and cancer to neurodegenerative diseases. However, the mechanisms underlying cinnamon's health benefits remain elusive.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China.
Background: Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment.
Methods: Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!