Suppressing Pancreatic Cancer Survival and Immune Escape via Nanoparticle-Modulated STING/STAT3 Axis Regulation.

Bioconjug Chem

Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China.

Published: November 2024

Pancreatic ductal adenocarcinoma (PDAC) poses a challenge in oncology due to its high lethality and resistance to immunotherapy. Recently, emerging research on the stimulator of interferon gene (STING) pathway offers novel opportunities for immunotherapy. Although STING expression is retained in PDAC cells, the response of PDAC cells to STING agonists remains ineffective. Signal transducer and activator of transcription 3 (STAT3), a downstream pathway of STING, is notably overexpressed in pancreatic cancer and related to tumor survival and immune escape. We observed that inhibiting STAT3 signaling post-STING activation effectively suppressed tumor growth through signal transducer and activator of transcription 1 (STAT1)-mediated apoptosis but led to a potential risk of immune-related adverse events (irAEs). To address this issue, we designed a tumor-penetrating liposome for the codelivery of STING agonist and STAT3 inhibitor. These nanoparticles regulated the STING/STAT3 signaling axis and effectively inhibited the proliferation and survival of tumor. Simultaneously, we found a significant increase in the activation of NK cells and CD8 T cells after treatment, leading to robust innate immunity and adaptive immune response. We highlight the potential of regulating the STING/STAT3 axis as a promising treatment for improving clinical outcomes in PDAC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.4c00379DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
survival immune
8
immune escape
8
sting/stat3 axis
8
pdac cells
8
signal transducer
8
transducer activator
8
activator transcription
8
sting
5
suppressing pancreatic
4

Similar Publications

The high efficacy of claudin18.2-targeted CAR-T cell therapy in advanced pancreatic cancer with a strategy to ensure the safety of patients.

Mol Ther

January 2025

Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China; Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China. Electronic address:

Pancreatic cancer (PC) is one of the most lethal digestive system tumors. Claudin18.2 is highly expressed in PC tissue and could serve as a suitable target for CAR-T therapy.

View Article and Find Full Text PDF

Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research.

Cancers (Basel)

January 2025

Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.

: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.

View Article and Find Full Text PDF

Pancreatic cancer is associated with high rates of morbidity and mortality. Endoscopic ultrasound (EUS)-guided biopsy has become the standard diagnostic modality per the guidelines. The use of EUS has been growing for providing various treatments in patients with pancreatic cancers: biliary and gallbladder drainage for those with malignant biliary obstruction, gastroenterostomy for malignant gastric outlet obstruction, celiac plexus/ganglia neurolysis for pain control, radiofrequency ablation, placement of fiducial markers, and injection of local chemotherapeutic agents.

View Article and Find Full Text PDF

Despite the significant advancements of liver surgery in the last few decades, the survival rate of patients with liver and pancreatic cancers has improved by only 10% in 30 years. Precision medicine offers a patient-centered approach, which, when combined with machine learning, could enhance decision making and treatment outcomes in surgical management of ihCC. This study aims to develop a decision support model to optimize treatment strategies for patients with ihCC, a prevalent primary liver cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!