Imidazole ligation of metals through histidine is extensive among metalloproteins, yet the role of the imidazolate conjugate base is often neglected, despite its potential accessibility when bonded to an oxidized metal center. Using synthetic models of oxygenated tyrosinase enzymes ligated exclusively by monodentate imidazoles, we find that deprotonation of the μ-η:η-peroxidodicopper(II) species triggers redox isomerization to an imidazolate-ligated bis(μ-oxido)dicopper(III) species. Formal two-electron oxidation to Cu(III) remains biologically unprecedented, yet is effected readily by addition of base. Spectrophotometric titrations by UV/Visible/near-IR and copper K-edge X-ray absorption spectroscopies are interpreted most simply as two cooperative, 2H transformations in which the peroxide O-O is cleaved in the first step. Elaboration from simple imidazoles to a protected histidine extends this isomerization into an amino acid environment. The role of phenolate as a base suggests this four-electron reduction of O is energetically viable in a biological context and requires only two copper centers, which act as two-electron shuttles when imidazole deprotonation assists. This existential precedent of viable imidazolate intermediates invites speculation into an alternative mechanism for phenol hydroxylation not previously considered at Type 3 copper sites such as tyrosinases. Structural biological evidence suggests imidazolate ligation of copper may be more widespread than generally understood.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202416967DOI Listing

Publication Analysis

Top Keywords

type copper
8
copper sites
8
copper
5
imidazolate-stabilized cuiii
4
cuiii dioxygen
4
dioxygen oxides
4
oxides type
4
sites imidazole
4
imidazole ligation
4
ligation metals
4

Similar Publications

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Enhanced Photothermal/Immunotherapy under NIR Irradiation Based on Hollow Mesoporous Responsive Nanomotor.

Inorg Chem

December 2024

Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.

In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research.

View Article and Find Full Text PDF

Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.

View Article and Find Full Text PDF

A highly-sensitive fluorescent probe for the detection of copper ions and its applications in water quality monitoring, neural cell imaging and plant imaging.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

High copper levels pose a risk to environmental and human health due to their toxicity and widespread industrial application, in which abnormal copper levels are associated with various diseases both in neurodegenerative diseases and plant growth. Thus, a turn-on fluorescent probe BBYD-Cu, based on donor-acceptor type structure, was designed and synthesized with easy preparations. BBYD-Cu can specifically recognized Cu by 2-picolinic ester group, then released the fluorophore to enhance the fluorescent signals.

View Article and Find Full Text PDF

Among the various studies on CO2 utilization, the sustainable and cost-effective fixation of CO2 into cyclic carbonates remains one of the most intriguing subjects. To this end, a novel type of  composite dicationic ionic liquid material, DIL@PDIL, was developed. This composite consists of a dicationic ionic liquid (DIL), DMAP[TMGH]Br, supported on a polymeric dicationic ionic liquid (PDIL), P-DVB/Im[TMGH]Br.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!