Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solution-processable conducting polymers open up a new era in organic electronics, fundamentally altering the processing methods of electronic devices. P-type conducting polymers, exemplified by aqueous solution-processed poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS), have been successfully commercialized. However, the performance of electron-transporting (n-type) materials remains considerably poorer. One of the primary challenges lies in striking a balance between conductivity and solvent processability. At present, most n-type conducting polymers necessitate toxic solvents for processing, which contradicts environmentally sustainable principles and impedes their potential for large-scale industrial applications. Herein, we developed an alcohol-processable high-performance n-type conducting polymer, poly(3,7-dihydrobenzo[1,2-b : 4,5-b']difuran-2,6-dione): poly(2-ethyl-2-oxazoline) (PBFDO : PEOx), which utilized electrostatic interactions between PEOx and PBFDO to simultaneously achieve high conductivity and alcohol-processability. The PBFDO : PEOx films exhibited remarkable electrical conductivity exceeding 1000 S cm with outstanding stability even at temperatures up to 250 °C, establishing it as a prominent green solvent-processed n-type conducting polymer that rivals the most advanced p-type counterparts. Various applications including organic thermoelectric, electrochemical transistor, and electrochromic devices were showcased, highlighting the broad potential of PBFDO : PEOx in advancing green organic electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202415349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!