Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep sleep oscillations are proposed to be central in restoring brain function and to affect different aspects of motor performance such as facilitating the consolidation of motor sequences resulting in faster and more accurate sequence tapping. Yet, whether deep sleep modulates performance fatigability during fatiguing tasks remains unexplored. We investigated overnight changes in tapping speed and resistance against performance fatigability via a finger tapping task. During fast tapping, fatigability manifests as a reduction in speed (or "motor slowing") which affects all tapping tasks, including motor sequences used to study motor memory formation. We further tested whether overnight changes in performance fatigability are influenced by enhancing deep sleep oscillations using auditory stimulation. We found an overnight increase in tapping speed alongside a reduction in performance fatigability and perceived workload. Auditory stimulation led to a global enhancement of slow waves and both slow and fast spindles during the stimulation window and a local increase in slow spindles in motor areas across the night. However, overnight performance improvements were not significantly modulated by auditory stimulation and changes in tapping speed or performance fatigability were not predicted by individual changes in deep sleep oscillations. Our findings demonstrate overnight changes in fatigability but revealed no evidence suggesting that this effect is causally linked to temporary augmentation of slow waves or sleep spindles. Our results are important for future studies using tapping tasks to test the relationship between sleep and motor memory consolidation, as overnight changes in objectively measured and subjectively perceived fatigue likely impact behavioural outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jsr.14371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!