A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy management system for multi interconnected microgrids during grid connected and autonomous operation modes considering load management. | LitMetric

This study focuses on improving power system grid performance and efficiency through the integration of distributed energy resources (DERs). The study proposes an artificial intelligence (AI) based effective approach for economic dispatch and load management for three linked microgrids (MGs) that operate in both grid-connected and autonomous modes. A day-ahead scheduling method is suggested to calculate the optimal set points for various energy sources in MGs considering various system constraints for safe operation. In addition, a load management approach that shifts the controllable loads from one interval to another is applied to reduce the operating cost of MG. To handle the optimization challenges of energy scheduling and load shifting such complexity and non-linearity, an advanced meta-heuristic method known as the one-to-one based optimizer (OOBO) is used. Overall, the paper proposes a viable and efficient methodology for economical distribution in linked microgrids, which takes advantage of renewable energy resources and incorporates scheduling optimization via the OOBO algorithm. The proposed energy management strategy enhances the system performance, increases energy efficiency, and reduces the daily operational cost by 1.6% for grid connected mode and by 0.47% for islanded operation mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487284PMC
http://dx.doi.org/10.1038/s41598-024-72952-5DOI Listing

Publication Analysis

Top Keywords

load management
12
energy management
8
grid connected
8
energy resources
8
linked microgrids
8
energy
7
system
4
management system
4
system multi
4
multi interconnected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!