Ferroptosis is a cell death modality in which iron-dependent lipid peroxides accumulate on cell membranes. Cysteine, a limiting substrate for the glutathione system that neutralizes lipid peroxidation and prevents ferroptosis, can be converted by cystine reduction or synthesized from methionine. However, accumulating evidence shows methionine-based cysteine synthesis fails to effectively rescue intracellular cysteine levels upon cystine deprivation and is unable to inhibit ferroptosis. Here, we report that methionine-based cysteine synthesis is tissue-specific. Unexpectedly, we find that rather than inhibiting ferroptosis, methionine in fact plays an essential role during cystine deprivation-induced ferroptosis. Methionine-derived S-adenosylmethionine (SAM) contributes to methylation-dependent ubiquinone synthesis, which leads to lipid peroxides accumulation and subsequent ferroptosis. Moreover, SAM supplementation synergizes with Imidazole Ketone Erastin in a tumor growth suppression mouse model. Inhibiting the enzyme that converts methionine to SAM protects heart tissue from Doxorubicin-induced and ferroptosis-driven cardiomyopathy. This study broadens our understanding about the intersection of amino acid metabolism and ferroptosis regulation, providing insight into the underlying mechanisms and suggesting the methionine-SAM axis is a promising therapeutic strategy to treat ferroptosis-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487270 | PMC |
http://dx.doi.org/10.1038/s41467-024-53380-5 | DOI Listing |
Alzheimers Dement
December 2024
BITS Pilani Hyderabad Campus, Hyderabad, Telangana, India; RMIT, Melbourne, VIC, Australia.
Background: Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is categorized as a complicated disorder of extreme fatigue lasting for at least six months without any underlying medical problem and currently has no concrete treatment regimen. This is associated with neurological complications like brain fog, insomnia, psychiatric disturbances and above all neuroinflammation. A chronic forced swim test model of CFS has been established since more than a decade at our laboratory.
View Article and Find Full Text PDFIn Vivo
December 2024
College of Biology, Hunan University, Changsha, P.R. China;
Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
Background: Coenzyme Q10 (CoQ10) is widely recognized for its powerful antioxidant properties, sparking considerable interest in its application within skincare treatments. However, its inherently poor water solubility has posed a major challenge in formulating effective skincare products.
Methods: This research aimed to develop and evaluate a water-soluble CoQ10 serum by forming a complex with hydroxypropyl β-cyclodextrin (HPβCD).
Antonie Van Leeuwenhoek
December 2024
Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
A thermophilic cellulase-producing bacterium, strain HSW-8, isolated from hot spring waters in South Korea, was subjected to a taxonomic analysis. Cells of strain HSW-8 were gram-stain-negative, facultatively anaerobic, rod-shaped, with optimum growth at 45 °C, pH 7.0, in the presence of 0% (w/v) NaCl.
View Article and Find Full Text PDFMetabolites
December 2024
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia.
Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!