AI Article Synopsis

  • Targeted next-generation sequencing (tNGS) provides a fast and reliable method for diagnosing tuberculosis (TB) and detecting drug resistance, potentially improving treatment decisions.
  • In a study of 143 Mycobacterium tuberculosis isolates and 158 bronchoalveolar lavage fluid samples, tNGS showed high agreement with other testing methods, significantly outperforming Xpert MTB/RIF in detecting TB cases.
  • The findings support tNGS as an effective tool for identifying TB and associated drug resistance directly from clinical samples, making it a valuable option for TB laboratory testing.

Article Abstract

Targeted next-generation sequencing (tNGS) offers a high-throughput, culture-independent approach that delivers a comprehensive resistance profile in a significantly shorter turn-around time, making it promising in enhancing tuberculosis (TB) diagnosis and informing treatment decisions. This study aims to evaluate the performance of tNGS in the TB diagnosis and drug resistance detection of Mycobacterium tuberculosis (MTB) using MTB clinical isolates and bronchoalveolar lavage fluid (BALF) samples. A total of 143 MTB clinical isolates were assessed, tNGS, phenotypic antimicrobial susceptibility testing (AST), and AST based on whole genome sequencing (WGS) exhibited high concordance rates, averaging 95.10% and 97.05%. Among 158 BALF samples, culture, Xpert MTB/RIF, and tNGS reported 29, 70 and 111 positives, respectively. In the confirmed cases with etiological evidence (smears, cultures, or molecular test), the positive rate of tNGS (73/83, 87.95%) was higher than that of Xpert MTB (67/83, 80.72%). Additionally, 45% (27/60) of clinically diagnosed cases (with imaging or immunological evidence) were positive for tNGS. Further validation on the discrepant results between tNGS and Xpert MTB/RIF with droplet digital PCR (ddPCR) yielded 35 positives, tNGS detected all, and Xpert MTB/RIF only identified 6 positives. In conclusion, tNGS demonstrates robust and rapid performance in the identification of MTB and its associated drug resistance, and can be directly applied to clinical samples, positioning it as a promising approach for laboratory testing of tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s15010-024-02411-wDOI Listing

Publication Analysis

Top Keywords

drug resistance
12
xpert mtb/rif
12
tngs
9
targeted next-generation
8
next-generation sequencing
8
promising approach
8
mycobacterium tuberculosis
8
mtb clinical
8
clinical isolates
8
balf samples
8

Similar Publications

The Spanish Society of Pneumology and Thoracic Surgery (SEPAR) and the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) have developed together Clinical Practice Guidelines (GPC) on the management of people affected by tuberculosis (TB) resistant to drugs with activity against Mycobacterium tuberculosis. These clinical practice guidelines include the latest updates of the SEPAR regulations for the diagnosis and treatment of drug-resistant TB from 2017 and 2020 as the starting point. The methodology included asking relevant clinical questions based on PICO methodology, a literature search focusing on each question, and a systematic and comprehensive evaluation of the evidence, with a summary of this evidence for each question.

View Article and Find Full Text PDF

Exploration of the feasibility of clinical application of phage treatment for multidrug-resistant -induced pulmonary infection.

Emerg Microbes Infect

January 2025

Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.

() commonly induces refractory infection due to its multidrug-resistant nature. To date, there have been no reports on the application of phage treatment for infection. This study was conducted to explore the feasibility of phage application in treating refractory infection by collaborating with a 59-year-old male patient with a pulmonary infection of multidrug-resistant Our experiments included three domains: ) selection of the appropriate phage, ) verification of the efficacy and safety of the selected phage, ) confirmation of phage-bacteria interactions.

View Article and Find Full Text PDF

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!