AI Article Synopsis

Article Abstract

Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-024-10382-5DOI Listing

Publication Analysis

Top Keywords

functional foods
12
foods
9
foods printing
8
printing encapsulation
8
probiotic foods
8
probiotic microorganisms
8
printing
6
probiotics
5
shaping future
4
future functional
4

Similar Publications

Background: Oral frailty in older adults can affect their eating efficiency, prolonging meal times, which can compromise food flavour.

Objective: This study explored the association between cooking methods and chewing-to-swallowing time on the basis of different oral functions in older adults.

Methods: This cross-sectional study involved 65 community-dwelling individuals aged ≥ 65 years.

View Article and Find Full Text PDF

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

This study explores the development of electrospun nanofibers incorporating bioactive compounds from (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties.

View Article and Find Full Text PDF

Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.

View Article and Find Full Text PDF

Bioactive Sesquiterpenoids from L. Flowers: Chemical Profiling and Antifungal Activity Against Species.

Plants (Basel)

January 2025

Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.

L. (cotton-lavender) is receiving increasing attention due to its potential for modern medicine and is considered both a functional food and nutraceutical. In this work, the phytochemical profile of its flower hydromethanolic extract was investigated by gas chromatography-mass spectrometry, and its applications as a biorational for crop protection were explored against spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!