Recent advances in genetic testing technologies have revolutionised the identification of genetic abnormalities in early onset developmental and epileptic encephalopathies (DEEs). In this Review, we provide an update on the expanding landscape of genetic factors contributing to DEEs, encompassing over 800 reported genes. We focus on the cellular and molecular mechanisms driving epileptogenesis, with an emphasis on emerging therapeutic strategies and effective treatment options. We explore noteworthy, novel genes linked to DEE phenotypes, such as gBRAT-1 and GNAO1, and gene families such as GRIN and HCN. Understanding the network-level effects of gene variants will pave the way for potential gene therapy applications. Given the diverse comorbidities associated with DEEs, a multidisciplinary team approach is essential. Despite ongoing efforts and improved genetic testing, DEEs lack a cure, and treatment complexities persist. This Review underscores the necessity for larger international prospective studies focusing on both seizure outcomes and developmental trajectories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2352-4642(24)00196-2DOI Listing

Publication Analysis

Top Keywords

developmental epileptic
8
epileptic encephalopathies
8
genetic testing
8
genetic
5
expanding field
4
field genetic
4
genetic developmental
4
encephalopathies current
4
current understanding
4
understanding future
4

Similar Publications

EEFSEC deficiency: A selenopathy with early-onset neurodegeneration.

Am J Hum Genet

January 2025

Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).

Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.

View Article and Find Full Text PDF

Purpose: Continuous EEG (cEEG) monitoring is increasingly used in the management of neonates with seizures. There remains debate on what clinically relevant information can be gained from cEEG in neonates with suspected seizures, at high risk for seizures, or with definite seizures, as well as the use of cEEG for prognosis in a variety of conditions. In this guideline, we address these questions using American Clinical Neurophysiology Society structured methodology for clinical guideline development.

View Article and Find Full Text PDF

Objective: Monoallelic variants in the transient receptor potential melastatin-related type 3 gene (TRPM3) have been associated with neurodevelopmental manifestations, but knowledge on the clinical manifestations and treatment options is limited. We characterized the clinical spectrum, highlighting particularly the epilepsy phenotype, and the effect of treatments.

Methods: We analyzed retrospectively the phenotypes and genotypes of 43 individuals with TRPM3 variants, acquired from GeneMatcher and collaborations (n = 21), and through a systematic literature search (n = 22).

View Article and Find Full Text PDF

. This study aims to characterize the clinical phenotype of a family with two siblings exhibiting neurological manifestations, utilizing whole exome sequencing (WES) to identify potential pathogenic variants within the gene. .

View Article and Find Full Text PDF

Novel Phenotypes and Genotype-Phenotype Correlations in a Large Clinical Cohort of Patients With Kleefstra Syndrome.

Clin Genet

January 2025

Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.

Kleefstra syndrome (KLEFS) is a genetic neurodevelopmental disorder caused by haploinsufficiency of EHMT1. The full spectrum of clinical features and genotype-phenotype correlations is currently not fully understood. We performed a retrospective chart review of patients with KLEFS evaluated at the Boston Children's Hospital Kleefstra Clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!