Phytoextraction based on hyperaccumulators is a sustainable bioremediation technology. However, hyperaccumulators can only accumulate a single type of pollutants and need long remediation times, inhibiting simultaneous phytoextraction of co-occurring inorganic and organic pollutants. Here, the study indicated that the environmental level of lanthanum, as an emerging pollutant, was absorbed by leaves and induced endocytosis from leaves to roots (systemic endocytosis) in Sedum alfredii. Cadmium and polystyrene nanoplastics were simultaneously absorbed by root cells through systemic endocytosis, increasing the accumulation of these pollutants in Sedum alfredii. One possible mechanism of improving phytoextraction of co-occurring cadmium and polystyrene nanoplastics is that the lanthanum-induced system endocytosis increased the nutrient absorption of Sedum alfredii, thus increasing the activity of antioxidant enzymes, enhancing photosynthesis, biomass, and plant tolerance. These findings provide a new empirical basis and strategy for the simultaneous phytoremediation of co-occurring inorganic and organic pollutants in environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131647DOI Listing

Publication Analysis

Top Keywords

sedum alfredii
16
phytoextraction co-occurring
12
cadmium polystyrene
12
polystyrene nanoplastics
12
environmental level
8
level lanthanum
8
co-occurring cadmium
8
co-occurring inorganic
8
inorganic organic
8
organic pollutants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!