Brain-computer interfaces (BCIs) have the potential to restore hand movement for people with paralysis, but current devices still lack the fine control required to interact with objects of daily living. Following our understanding of cortical activity during arm reaches, hand BCI studies have focused primarily on velocity control. However, mounting evidence suggests that posture, and not velocity, dominates in hand-related areas. To explore whether this signal can causally control a prosthesis, we developed a BCI training paradigm centered on the reproduction of posture transitions. Monkeys trained with this protocol were able to control a multidimensional hand prosthesis with high accuracy, including execution of the very intricate precision grip. Analysis revealed that the posture signal in the target grasping areas was the main contributor to control. We present, for the first time, neural posture control of a multidimensional hand prosthesis, opening the door for future interfaces to leverage this additional information channel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2024.09.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!