A technique is being developed for the design and fabrication of anthropomorphic phantoms for diagnostic x-ray imaging. Anatomic information extracted from actual patient radiographs is incorporated into the phantoms using computer image processing and computer-assisted machining methods. In this paper, the technique is described as applied to a breast phantom, and preliminary images that closely mimic human anatomy on radiographs are shown.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiology.158.2.3941885DOI Listing

Publication Analysis

Top Keywords

anthropomorphic radiologic
4
radiologic phantoms
4
phantoms technique
4
technique developed
4
developed design
4
design fabrication
4
fabrication anthropomorphic
4
anthropomorphic phantoms
4
phantoms diagnostic
4
diagnostic x-ray
4

Similar Publications

Free-Breathing Respiratory Triggered High-Pitch Lung CT: Insights From Phantom and Patient Scans.

Invest Radiol

January 2025

From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).

Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.

View Article and Find Full Text PDF

Photon-Counting CT Effects on Sensitivity for Liver Lesion Detection: A Reader Study Using Virtual Imaging.

Radiology

January 2025

From the Department of Radiology, Duke University Hospital, 2301 Erwin Rd, Box 3808, Durham, NC 27701 (B.W.T., K.R.K., B.C.A., S.P.T., D.E.K., B.H., M.R.B., D.M., E.S., E.A.); Department of Biostatistics and Bioinformatics (N.F., S.M., A.E.) and Department of Medical Physics (W.P.S., E.S., E.A.), Duke University, Durham, NC.

Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.

View Article and Find Full Text PDF

AAPM Truth-based CT (TrueCT) reconstruction grand challenge.

Med Phys

January 2025

Center for Virtual Imaging Trial, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA.

Background: This Special Report summarizes the 2022, AAPM grand challenge on Truth-based CT image reconstruction.

Purpose: To provide an objective framework for evaluating CT reconstruction methods using virtual imaging resources consisting of a library of simulated CT projection images of a population of human models with various diseases.

Methods: Two hundred unique anthropomorphic, computational models were created with varied diseases consisting of 67 emphysema, 67 lung lesions, and 66 liver lesions.

View Article and Find Full Text PDF

Motivation: Whole-body Positron Emission Tomography (PET) imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated time-of-flight (TOF) PET.

View Article and Find Full Text PDF

Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging.

J Med Imaging (Bellingham)

December 2024

University of Chicago, Department of Radiology, Chicago, Illinois, United States.

Purpose: High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform "MV-kV" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!