Objective: The asymptomatic nature of tuberculosis (TB) during its latent phase, combined with limitations in current diagnostic methods, makes accurate diagnosis challenging. This study aims to identify TB diagnostic biomarkers by integrating gene expression screening with machine learning, evaluating their diagnostic potential and correlation with immune cell infiltration.

Methods: We analyzed GSE19435, GSE19444, and GSE54992 datasets to identify differentially expressed genes (DEGs). GO and KEGG enrichment characterized gene functions. Three machine learning algorithms identified potential biomarkers, validated with GSE83456, GSE62525, and RT-qPCR on clinical samples. Immune cell infiltration was analyzed and verified with blood data.

Results: 249 DEGs were identified, with PDE7A and DOK3 emerging as potential biomarkers. RT-qPCR confirmed their expression, showing AUCs above 0.75 and a combined AUC of 0.926 for TB diagnosis. Immune infiltration analysis revealed strong correlations between PDE7A, DOK3, and immune cells.

Conclusion: PDE7A and DOK3 show strong diagnostic potential for TB, closely linked to immune cell infiltration, and may serve as promising biomarkers and therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2024.102570DOI Listing

Publication Analysis

Top Keywords

immune cell
16
machine learning
12
cell infiltration
12
pde7a dok3
12
identify diagnostic
8
diagnostic biomarkers
8
diagnostic potential
8
potential biomarkers
8
immune
6
diagnostic
5

Similar Publications

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment.

View Article and Find Full Text PDF

Autograft composition and outcome-towards an optimal graft?

Cytotherapy

December 2024

Department of Medicine, Kuopio University Hospital, Kuopio, Finland. Electronic address:

The amount of CD34 cells has been for decades the most important marker of autologous graft quality, but other graft cells, including various lymphocyte subsets, have gained some interest. This review attempts to summarize what is known about autograft cellular composition regarding post-transplant outcomes. The amount of CD34 cells in the graft is associated with tempo of platelet recovery.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!