Permanganate has been extensively applied in water treatment due to its ease of handling and high stability. However, the impact of common water constituents, especially metal ions, on permanganate oxidation is poorly understood. Here, we report that many redox-inactive metal ions, such as Ca, Mg, Zn, Cu, and Al, can enhance the reactivity of permanganate with phenolic compounds. Moreover, the enhancing effects of metal ions are highly pH-dependent with the largest promotion effect obtained at the pH close to phenols' pK. Experimental and computational analysis revealed that the oxidation of protonated phenols by permanganate underwent proton-coupled electron transfer (PCET) pathways, regardless of the presence of metal ions. Nonetheless, metal ions could catalyze the concerted electron-proton transfer (CEPT) but exhibited negligible effect on ETPT (electron transfer followed by proton transfer) and PTET (proton transfer followed by electron transfer) reactions, accounting for the pH-dependent effects of metal ions. Correlation between CEPT rate constants and the complexing capability of metal ions with phenols suggested that the co-existing metal ions may coordinate to phenolic O-H group and thus facilitate the CEPT reaction of phenols. This study could shed light on the application of permanganate in real practice and the modulation of CEPT reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122622 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFNanoscale
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.
View Article and Find Full Text PDFChemistry
January 2025
National & Kapodistrian University of Athens, Chemistry, Panepistimiopolis, Zografou, 15771, Athens, GREECE.
The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!