Electrospun zeolitic imidazole framework-8 loaded silk fibroin/polycaprolactone nanofibrous scaffolds for biomedical application.

J Mech Behav Biomed Mater

State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China. Electronic address:

Published: December 2024

The development of electrospun nanofibrous scaffolds (NFSs) have aroused much attraction in the field of biomedical engineering, due to their small fiber diameter, high specific surface area, and excellent extracellular matrix comparability. The main focus of this study is to design and fabricate novel zeolitic imidazole framework-8 (ZIF-8)-loaded silk fibrin/polycaprolactone (SF/PCL) nanofiber composite scaffolds by using the electrospinning strategy. Firstly, ZIF-8 was synthesized and characterized, which showed remarkable features in terms of shape, size, chemical and physical properties. Then, three different amounts of ZIF-8 were encapsulated into SF/PCL nanofibers during electrospinning, to investigate how the addition of ZIF-8 affected the morphology, and structure, as well as physical, mechanical, and biological properties of the nanofiber composite scaffolds. It was found that the addition of ZIF-8 didn't change the nanofibrous morphology of the composite scaffold, and no bead-like structure were found for the SF/PCL composite scaffolds loading with or without ZIF-8. The appropriate addition of ZIF-8 could significantly increase the mechanical properties of SF/PCL NFSs. The SF/PCL NFS containing 5% ZIF-8 showed high ultimate stress and initial modulus, which were 40.31 ± 2.31 MPa, and 569.19 ± 21.38 MPa, respectively. Furthermore, the MTT assay indicated that the pure SF/PCL scaffold and one with 1% ZIF-8 exhibited nearly identical cell compatibility toward human dermal fibroblast (HDF) cells, but some obvious cytotoxicity was observed with the increase of ZIF-8 content. However, the incorporation of ZIF-8 into SF/PCL NFSs was found to have excellent antibacterial rate against both E. coli and S. aureus. In all, the incorporation of 1% ZIF-8 could impart the SF/PCL NFS with balanced bio-function, making it a promising candidate for diverse biomedical applications such as tissue engineering and wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106769DOI Listing

Publication Analysis

Top Keywords

composite scaffolds
12
addition zif-8
12
zif-8
11
zeolitic imidazole
8
imidazole framework-8
8
nanofibrous scaffolds
8
sf/pcl
8
nanofiber composite
8
sf/pcl nfss
8
sf/pcl nfs
8

Similar Publications

Injectable, self-healing and phase change nanocomposite gels loaded with two nanotherapeutic agents for mild-temperature, precise and synergistic photothermal-thermodynamic tumor therapy.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China. Electronic address:

Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.

Adv Healthc Mater

January 2025

School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.

View Article and Find Full Text PDF

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!