S100A8 knockdown activates the PI3K/AKT signaling pathway to inhibit microglial autophagy and improve cognitive impairment mediated by chronic sleep deprivation.

Int Immunopharmacol

Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:

Published: December 2024

Objective: Cognitive dysfunction is one of the major symptoms of chronic sleep deprivation (CSD). Abnormal autophagy and apoptosis are thought to be important mechanisms. S100 Calcium Binding Protein A8 (S100A8) plays a key role in autophagy and apoptosis of microglia. This study investigated whether S100A8 knockdown can effectively inhibit aberrant autophagy in microglia and improve cognitive function by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway under CSD conditions.

Methods: CSD mouse models and BV2 cell autophagy models were established in vivo and in vitro. Transcriptome sequencing was used to determine the key regulator related to autophagy. The Morris water maze test was used to evaluate the cognitive behavior of the mice. RT-qPCR and western blot were conducted to examine S100A8 expression and autophagy signalling. HE, TUNEL, transmission electron microscopy, immunofluorescence, and histochemistry were performed to detect pathological changes, neuronal autophagy, apoptosis, or positive cells in hippocampal tissues, respectively.

Results: Transcriptome sequencing showed that S100A8 was significantly elevated in CSD mice, and fluorescence colocalization results further suggested that S100A8 mainly colocalizes with microglia. In vivo studies revealed that knockdown of S100A8 alleviated CSD-induced cognitive impairment in mice. Through further mechanistic investigations employing both in vivo and in vitro models, we demonstrated that silencing S100A8 can activate the PI3K/AKT pathway, thereby reducing CSD-induced abnormal autophagy and apoptosis in microglia. Aberrant autophagy and apoptosis in microglia were reversed with the PI3K/AKT pathway inhibitor LY294002.

Conclusion: The S100A8/PI3K/AKT axis plays a crucial role in chronic sleep deprivation-mediated autophagy and apoptosis in microglia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113375DOI Listing

Publication Analysis

Top Keywords

autophagy apoptosis
24
apoptosis microglia
16
chronic sleep
12
autophagy
11
s100a8
8
s100a8 knockdown
8
signaling pathway
8
improve cognitive
8
cognitive impairment
8
sleep deprivation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!