Force mechanism analysis of composite microbial dust suppressants based on extracellular polymeric substances (EPS) mode components.

J Environ Manage

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.

Published: November 2024

As an important potential dust suppression method, the slow onset time is one of the key factors that restrict the effect of microbial dust suppressant. In the early stage, we have confirmed that extracellular polymeric substances (EPS) can improve the dust suppression effect by wetting coal dust and increasing Ca nucleation sites. Therefore, in this study, chitosan (CTS) and bovine serum albumin (BSA) in different ratios (CTS: BSA = 1:1, 1:2, 2:1) as model molecules of EPS were combined with Bacillus subtilis to prepare efficient and fast microbial dust suppressants. Furthermore, the interaction forces were analyzed through molecular dynamics simulation. Results showed that adding CTS and BSA would improve the dust suppression effect, and the dust suppression effect was the best when the ratio of CTS: BSA was 1:2. In addition, the contact angle decreased as the BSA content increased. The Fourier transform infrared spectroscopy (FTIR) results showed that when the ratio of CTS to BSA was 1:2, the dust suppressants were easier to interact with coal dust by the key functional groups and form calcite type CaCO. The molecular dynamics simulation results showed that the main interaction was Van der Waals force. In addition, the interaction force was strongest when CTS: BSA was 1:2, increasing by 137% compared with the microbial dust suppressants without CTS or BSA. This study provides theoretical support for the development of efficient and rapid microbial dust suppressants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122926DOI Listing

Publication Analysis

Top Keywords

microbial dust
20
dust suppressants
20
cts bsa
20
dust suppression
16
dust
12
extracellular polymeric
8
polymeric substances
8
substances eps
8
improve dust
8
coal dust
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!