In cattle, oviductal function is controlled by the ovarian sex-steroids estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex-steroid milieus differentially impacts the oviductal fluid composition. Estrous cycles of non-lactating, multiparous Nelore cows were pre-synchronized and then synchronized with a protocol designed two induce ovulation of large or small follciles. Larger preovulatory follicle (day 0) and corpora lutea (day 4) and greater estradiol (day 0) and progesterone (day 4) concentrations were observed in the large follciles group. Four days after induced ovulation, oviductal fluid was collected post-mortem. Quantitative mass spectrometry was used to determine the concentration of amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, hexoses, prostaglandins, and related compounds. Multivariate analyses (orthogonal projections to latent structures discriminant analysis) were conducted to compare the metabolomic signatures of oviductal fluids. Correlation network analysis was conducted to measure the strength and hierarchy of associations among metabolites. Of the 205 metabolites quantified, 171 were detected in at least 50% of the samples and were included in further data analysis. After orthogonal projections to latent structures discriminant analysis analysis, samples of the large follciles and small follciles were divided clearly into two non-overlapping clusters. Twenty metabolites had different or tended to have different concentrations in the oviductal fluid when comparing groups. Seven of these 20 analytes had greater concentrations in large follciles cows. Moreover, total sum of biogenic amines, phosphatidylcholines, and prostaglandins were higher in the small follciles group. The correlation network showed that the large follciles group metabolites' concentrations were highly intercorrelated, which was not observed in the small follciles group. We concluded that the periovulatory endocrine milieu regulates the composition of the oviductal fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/biolre/ioae153 | DOI Listing |
Am J Case Rep
January 2025
Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
BACKGROUND Gestational trophoblastic diseases (GTDs) are a group of benign and malignant tumors that arise from placental tissue. Ectopic pregnancies most commonly occur within the fallopian tubes. The estimated incidence of ectopic gestational trophoblastic diseases (GTDs) is approximated at 1.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA.
The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.
View Article and Find Full Text PDFTheriogenology
March 2025
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Yale School of Medicine, New Haven, CT 06510, USA.
46,XY sex reversal 11 (SRXY11) is a rare and recently identified form of 46,XY difference in sexual development (DSD), caused by variants in the DEAH-Box Helicase 37 gene (). is crucial for ribosome biogenesis, but its specific role in gonadal development remains unclear. The genital phenotype varies widely, ranging from typical female to typical male.
View Article and Find Full Text PDFCells
November 2024
Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!