Acceleration is the key to drag reduction in turbulent flow.

Proc Natl Acad Sci U S A

Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544.

Published: October 2024

A turbulent pipe flow experiment was conducted where the surface of the pipe was oscillated azimuthally over a wide range of frequencies, amplitudes, and Reynolds numbers. The drag was reduced by as much as 35%. Past work has suggested that the drag reduction scales with the velocity amplitude of the motion, its period, and/or the Reynolds number. Here, we find that the key parameter is the acceleration, which greatly simplifies the complexity of the phenomenon. This result is shown to apply to channel flows with spanwise surface oscillation as well. This insight opens potential avenues for reducing fuel consumption by large vehicles and for reducing energy costs in large piping systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513946PMC
http://dx.doi.org/10.1073/pnas.2403968121DOI Listing

Publication Analysis

Top Keywords

drag reduction
8
acceleration key
4
key drag
4
reduction turbulent
4
turbulent flow
4
flow turbulent
4
turbulent pipe
4
pipe flow
4
flow experiment
4
experiment conducted
4

Similar Publications

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

Experimental study on the drag reduction performance of sodium alginate in saline solutions.

Sci Rep

December 2024

Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray Park Campus Ballarat Road, Footscray, Melbourne, 8001, Australia.

Since the discovery of the turbulence drag reduction phenomenon over 70 years ago, it has been recognized that the addition of small quantities of drag-reducing agents to fluids can significantly decrease wall shear stress, thereby enhancing fluid pumpability. In many applications, the fluids often contain salts, such as those used in fracturing processes within the petroleum sector. The aim of this study is to experimentally investigate the effects of salinity, flow rate, and polymer concentration on the drag reduction performance of sodium alginate in circular pipes.

View Article and Find Full Text PDF

Impact of ontogeny and spines on the hydrodynamic performance of the Cambrian arthropod .

R Soc Open Sci

December 2024

Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi'an 710069, People's Republic of China.

A metazoan-dominated biological pump was established early in the Phanerozoic, a time that saw the evolution of the first pelagic euarthropod zooplankton such as some species of the Cambrian bivalved euarthropod . Pelagic groups evolved from benthic stock, in many cases through neoteny and retention of characteristics from planktic larval stages. However, brooded eggs and did not have a planktic larval stage, precluding this route into the pelagic realm.

View Article and Find Full Text PDF

Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.

View Article and Find Full Text PDF
Article Synopsis
  • Manipulating fluid flow is crucial for advances in microfluidics, nanoengineering, and biomedicine, and can help address the global energy crisis by achieving zero-drag hydrodynamics.
  • The research tackles challenges posed by the D'Alembert paradox and unresolved Navier-Stokes equations, introducing a new type of hydrodynamic cloak that operates with isotropic and homogeneous viscosity.
  • Key findings highlight the importance of controlling vorticity for achieving zero-drag and hydrodynamic cloaking, challenging the notion that zero drag is impossible and offering insights beneficial for various technologies, including drug delivery systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!