Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487953 | PMC |
http://dx.doi.org/10.1080/19490976.2024.2416915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!