Acute contractile activity induces the activation of the mitochondrial integrated stress response and the transcription factor ATF4.

J Appl Physiol (1985)

Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.

Published: October 2024

AI Article Synopsis

  • Skeletal muscle relies on mitochondria for energy and metabolic flexibility, with mitochondrial quality control processes, including the integrated stress response (ISR), playing a crucial role in managing cellular stress.
  • In a study using mice, researchers stimulated muscle contractions and found that ISR was activated after exercise, shown by increased levels of specific proteins and genes associated with stress response, like ATF4 and CHOP.
  • The increase in ATF4 mRNA stability after exercise was linked to the RNA binding protein HuR, suggesting that acute exercise can induce mitochondrial stress and potentially lead to adaptations in muscle over time.

Article Abstract

Skeletal muscle relies on mitochondria to produce energy and support its metabolic flexibility. The function of the mitochondrial pool is regulated by quality control (MQC) processes. The integrated stress response (ISR), a MQC pathway, is activated in response to various cellular stressors. The transcription factor ATF4, the main effector of the ISR, ameliorates cellular stress by upregulating protective genes, such as CHOP and ATF5. Recent literature has shown that the ISR is activated upon mitochondrial stress, however, whether this includes acute exercise-induced stress is poorly defined. To investigate this, a mouse hindlimb protocol was utilized to acutely stimulate muscles at 0.25, 0.5 and 1 tetanic contraction/per second for 9 mins, followed by a 1-hour recovery period. CAMKII and JNK2 were robustly activated 6-fold immediately following the protocol. ISR activation, denoted as the ratio of phosphorylated to total-eIF2a protein levels, was also elevated following recovery. Downstream, contractile activity induced an increase in the nuclear localization of ATF4. Robust 2-fold increases in the mRNA expression of ATF4 and CHOP were also observed following the recovery period. Changes in ATF4 mRNA were independent of transcriptional activation, as assessed using an ATF4 promoter-reporter plasmid. Instead, mRNA decay assays revealed an increase in ATF4 mRNA stability post-contractile activity, as a result of enhanced stabilization by the RNA binding protein, HuR. Thus, acute contractile activity is sufficient to induce mitochondrial stress and activate the ISR, corresponding to the induction of ATF4 with potential consequences for mitochondrial phenotype adaptations in response to repeated exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00307.2024DOI Listing

Publication Analysis

Top Keywords

contractile activity
12
acute contractile
8
integrated stress
8
stress response
8
transcription factor
8
atf4
8
factor atf4
8
mitochondrial stress
8
recovery period
8
atf4 mrna
8

Similar Publications

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Purpose: Individuals with Lateral Epicondyle Tendinopathy (LET) commonly experience gripping deficits, which are marked by pain and altered motor control of the forearm extensors and flexors. Although delayed activation of the anconeus muscle during rapid wrist extension has been observed in LET, its role during gripping is not well understood. This study aimed to investigate anconeus activation and its relation to forearm muscle activity during gripping in individuals with LET.

View Article and Find Full Text PDF

From Ca dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN by correction of aberrant Ca-handling.

Pharmacol Res

December 2024

Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany. Electronic address:

Article Synopsis
  • Impaired calcium (Ca) handling in heart cells is a key feature of heart failure (HF), leading to issues like weakened heart contractions and irregular heartbeats.
  • The study used transgenic mice with a mutation affecting a calcium regulator (phospholamban) to understand how defects in calcium cycling contribute to HF, noting that these mice experience severe and fast-progressing heart failure.
  • Early treatment aimed at correcting calcium cycling using Raf kinase inhibitor protein (RKIP) was found to delay heart cell damage and improve overall health of the mice, indicating that addressing Ca dynamics early on could be crucial for preventing further complications in heart failure.
View Article and Find Full Text PDF

Introduction: Walking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact.

Methods: This feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain.

View Article and Find Full Text PDF

Dileucine ingestion, but not leucine, increases lower body strength and performance following resistance training: A double-blind, randomized, placebo-controlled trial.

PLoS One

December 2024

Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology and Health, Lindenwood University, St. Charles, Missouri, United States of America.

Background: The essential amino acid leucine (LEU) plays a crucial role in promoting resistance-training adaptations. Dileucine (DILEU), a LEU-LEU dipeptide, increases MPS rates, however its impact on resistance training outcomes remains unexplored. This study assessed the effects of DILEU supplementation on resistance training adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!