Plant viral infections cause significant economic losses, totalling $350 billion USD in 2021. With no treatment for virus-infected plants, accurate and efficient diagnosis is crucial to preventing and controlling these diseases. High-throughput sequencing (HTS) enables cost-efficient identification of known and unknown viruses. However, existing diagnostic pipelines face challenges. First, many methods depend on subjectively chosen parameter values, undermining their robustness across various data sources. Second, artifacts (e.g. false peaks) in the mapped sequence data can lead to incorrect diagnostic results. While some methods require manual or subjective verification to address these artifacts, others overlook them entirely, affecting the overall method performance and leading to imprecise or labour-intensive outcomes. To address these challenges, we introduce IIMI, a new automated analysis pipeline using machine learning to diagnose infections from 1583 plant viruses with HTS data. It adopts a data-driven approach for parameter selection, reducing subjectivity, and automatically filters out regions affected by artifacts, thus improving accuracy. Testing with in-house and published data shows IIMI's superiority over existing methods. Besides a prediction model, IIMI also provides resources on plant virus genomes, including annotations of regions prone to artifacts. The method is available as an R package (iimi) on CRAN and will integrate with the web application www.virtool.ca, enhancing accessibility and user convenience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483527 | PMC |
http://dx.doi.org/10.1093/bib/bbae501 | DOI Listing |
JAMA Intern Med
January 2025
Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.
Importance: SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) contribute to many hospitalizations and deaths each year. Understanding relative disease severity can help to inform vaccination guidance.
Objective: To compare disease severity of COVID-19, influenza, and RSV among US veterans.
Vet Res Commun
January 2025
ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, Karnataka, 560119, India.
Sheeppox and Goatpox are highly contagious transboundary viral diseases of sheep and goats caused by Capripoxvirus, respectively. This study describes the development of indirect ELISA and its serodiagnostic potential as an alternative to the gold standard serum neutralization test (SNT). The homologue of vaccinia virus, ORF 117 (A27L) gene of the Romanian Fenner (RF) strain of Sheeppox virus (SPPV) was used for producing the full-length recombinant A27L (rA27L) protein (∼22 kDa) in a prokaryotic expression system.
View Article and Find Full Text PDFHepatol Int
January 2025
Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.
View Article and Find Full Text PDFVet Res Commun
January 2025
College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!